
4.

NAVAL POSTGRADUATE SCHOOL
Ln Monterey, California

WC FILEG& §

7b

THESIS

A PAD ROUTER FOR THE MONTEREY SILICON COMPILER

by

Carlos Francisco Rexach

March 190P

Thesis Advisor: D. E. Kirk

Approved for public release; distribution unlimited.

-DTIC

AAU 119 88

P E

SECUITY CLSSIFICATION OF THS RAM 9- ;

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION'AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;

distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b OFFiCE SYMBOL 7a. NAME OF MONITORING ORGANIZATION1 (If applicable)

Naval Postgraduate School (applicable) Naval Postgraduate School

6C. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

Ba. NAME OF FUNDINGSPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT :NSTRUMENT fDENTIFICATION NUMBER
ORGANIZATION (If applicable)

.ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNITELEMENT NO INO NO ACCESSION NO

11. TITLE (Include Security Classification)

A PAD ROUTER FOR THE MONTEREY SILICON COMPILER

12. PERSONAL AUTHOR(S)

R.xarh C rnc F

13a. TYPE OF REPORT 13b. TIME COVERED 14, DATE OF REPORT (Year, Month, Day) 115 P\-r COUNT

Mm;t,-r' Thpclc FROM TO M~rrh 1gRR 184
16. SUPPLEMENTARY NOTATION

The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the Department of Defense or the U.S. Government.

17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUBGROUP VLSI Design, MacPitts, Silicon Compiler, CAD Tools,

Pad Router, Pad Placement, Router k

19. ABSTRACT (Continue on reverse if necessary and idmtity by block number)

A two layer pad router is developed for the Monte-ey Silicon Compiler. Features include
an improved pad placement routine that extracts information 'from the internal layout to
minimize chip area and wiring lengths, and a track allocation algoritt n that minimizes the
use of polysilicon during net layout. The router's performance was compared Io-that of the
MacPitt's Silicon Compiler with four distinct circuits. The Monterey pad router layo-.
were 53 to 255, faster, and 10% to 15% smaller than those produced by MacPitts. C /

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21 ABSTiD CJRT CLASSIFICATION
BUNCLASSIFIED/UNLIMITED C:- SAME AS RPT C3 DTIC USERS U LA lED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) I22c OFFICE SYMBOL

D.E. Kirk (4o8) 277-9536 S 2,,
TC rRM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete u G n o oce ii-604.243

If .. Gtrn etfrni- 0he |6- G;4

n ; 'ln~lillli [~w'~li~l I Illii ll

Approved for public release; distribution is unlimited

A Pad Router for the
Monterey Silicon Compiler

by

Carlos Francisco Rexach
Lieutenant, United States Navy

B. S., University of Puerto Rico, 1980

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 1988

Author: ______

Carlos Francisco Rexach

Approved by: ____'_-_ _

At. H. Loormis, Jr!*, Seconoeader

J. . rs, Chairman, Department of
Electrical and Computer Engineering

Gordon E. Schacher,
Dean of Science and Engineering

!111 Xix 4111 O ----

ABSTRACT

A two layer pad router is developed for the Monterey Silicon Compiler. Fea-

tures include an improved pad placement routine that extracts information from

tI. internal layout to minimize chip area and wiring lengths, and a track allocation

algorithm that minimizes the use of polysilicon during net layout. The router's per-

formance was compared to that of the MacPitts silicon compiler with four distinct

circuits. The Monterey pad router layouts were 5% to 25% faster, and 10% to 15% S

smaller than those produced by MacPitts.

Aoession For .

NIs GRA&I
DTIC TAB
Unannounced
Justification

Distributi£on/_

Availability Codes
iAvafi and/orDist special / --

'2>

iii

IlS

7 e

TABLE OF CONTENTS

I. INTRODUCTION.. 1

A. BACKGROUND .. 1

B. SCOPE OF THESIS INVESTIGATION 2

C. THESIS ORGANIZATION.................................-2

II. ROUTING TECHNIQUES.................................... _4

A. GENERAL ROUTING PROBLEM.......................... 4

B. ROUTERS STUDIED 9

1. Lee Router ... 9

2. Global Router.. 15

3. Channel Router....................................... 23

4. River Router......................... 29

5. Moat Router 3

C. SUMMARY ... 34

III. ROUTING IN MACPITTS 35

A. ROUTING IN DATA-PATH 35

B. ROUTING BETWEEN DATA-PATH AND CONTROLLER ...36

C. ROUTING TO PADS..................................... 43

1. Pad Placement 44

2. Net Extraction 46

3. Net Layout...49

D. SUMMARY ... 534

TV . ROUTING IN THE MONTEREY SILICON COMPILER 5

A. DATA-PATH .. 57

B. PAD ROUTING.. 58

iv

1. Pad Placement 60

2. Pad Layout .. 69

3. Net Extraction 73

4. Net Layout..................................... -

C. SUMMARY ... S2

V. RESULTS ... S3

A. MONTEREY SILICON COMPILER ENVIRONMENT S3

B. RESULTS...5S3

1. Area .. 93

2. Wire Length..93

3. Vias... 9s

VI. CONCLUSIONS ... 99

A. SUMMARY ... 99

B. RECOMMENDATIONS..................................100o

APPENDIX A: MACPITTS' FUNCTIONS 101

APPENDIX B: MONTEREY FUNCTIONS 133

APPENDIX C: SOURCE CODE FOR TEST CIRCUITS............ 165

A. MEMORY ... 163

B. TEST.. 165

C. MULTIP4 I.... 166166

D. TAXI.. 167

LIST OF REFERENCES .. 16S

BIBLIOGRAPHY .. 171

INITIAL DISTRIBUTION LIST.................................. 172

LIST OF FIGURES

1. Mead-Conway width and spacing rules 8

2. Lee rouber exaanple initial circuit configuration 12

3. Cell configuration after Lee algorithm with a minimal- crossing

param eter is applied .. 14

4. Cell Configuration after Lee algorithm with a minimum- wire-length

param eter is applied .. 15

5. Partitioning a chip into global wiring cells 17

6. Grid with original boundary costs 18

7. Cell values after step 5 .. 19

S. Cell values after step 6 .. 20

9. Cell values at end of forward propagation 21

10. The backtrace route22

11. The left-edge channel router .. 24

12. A channel with vertical constraints 25

13. Making the vertical constraint graph for the channel of Figure 8 27

14. Vertical constraint loop ... 28

15. Channel routed by the greedy algorithm 29

16. A channel unroutable by the greedy algorithm 30

17. The river routing problem .. 31

18. Concentric tracks and radial column geometry of moat

routing region ... 33

19. M oat routing direction ambiguity 33

vi

-WWR~ouF~7~7VTLKI~V7 - Z

20. MacPitts data-path design.. 36

21. Typical MacPitts controller design................................. 38

2.Wing layout .. 40

23. Solution to river routing problem.................................. 41

24. Routing pads in MacPitts... 45

25. MacPitts floor plan.. 51

26. Routing moat corners in MacPitts................................. 53.

27. Typical MacPitts circuit design 56

28. Opening data-path on the left and right sides 59

29. MacPitts' pad ring... 61

30. MacPitts' power and ground frame................................. 63

31. Circuit with pads on four sides 65

32. A circuit with pads on two sides................................... 68

33. Pins-layout... 70

34. Contents of layout-pad20b- input- pad............................... 72

35. Pad routing area .. 76

36. Sample routing problem.. 78

37. Routing the corners.. 81

3S. MEMORY design by MacPitts 386

39. MEMORY design by Monterey 87

40. TEST design by MacPitts.. 8S

41. TEST design by Monterey..389

42. MULTIP4 design by Macpitts 90

43. MULTIP4 design by Monterey 90

vii

44. TAXI design by MacPitts... 91

45, TAXI design by Monterey .. 92

46. Sample MOS circuit... I.... 94

47. Bounds for the step response of circuit in Figure 44 for various

lengths of polysilicon interconnect: (a) L = 0, (b) L = 100M 95

48. Bounds for the step response of circuit in Figure 44 for various lengths

of polysilicon interconnect: (a) L= 1mm, (b) L= 1cm................ 96

viii
'

.

II

LIST OF TABLES

1. Statistics for MacPitts and Monterey chip designs 85

2. Guidelines for ignoring RC wire delays 94

i

rI

U1I

ix -

I. INTRODUCTION

A. BACKGROUND

Weste and Eshragian [Ref. 1] describe silicon compilers as "'an automatic traiis-

lation tool that converts a behavioral description into a mask level descripriii."

Silicon compilers provide a powerful tool that allows the designer to explore perol r-

mance tradeoffs associated with changes to VLSI designs. This is a capability tat

less automated design environments do nc L allow.

The Monterey silicon compiler (MSC) evolved from an ongoing effort to con-

vert the NMOS based MacPitts silicon compiler into a Scalable Complc:lentary

Metal Oxide Silicon (SCMOS) silicon compiler. MacPitts was developed by Siskn~d.

Southard and Crouch [Ref. 2] at the Massachusetts Institute of Technology Lin,,,ln

Labloratories in 1981 - 1982. Like its predecessor, the MSC is a fixed floor plan il-

icon compiler suited to handle concurrent parallel data-path architectures coinnion

in many signal processing applications.

MacPitts has been studied at the Naval Postgraduate School since 1984. Early

thesis work dealt with its installation and documentation. Very little documentatriont ,

existed on MacPitts at that time. MacPitts was installed on the VAX-1I/7S) hY

D. Carlson in 1984 [Ref. 3]. In 1985 A. Froede [Ref. 4] discussed alacPirt <

inirernal structure, and R. Larrabee [Ref 5]. demonstrated the relationship betw',ii

the source program and the final chip layout. In 1986, M. A. Malagon-Fajar [Ref. 6o

completed a valuable study on the relationship between the compiler and its laywut

language. L5. In the same year. E. Weist [Ref. 7] developed a flowchart based inlp ut

interface for MacPitts. In 1987. A. Mullarky [Ref. 8] designed the first SC'?\I)S i

cells. and E. Malagon [Ref. 9] described the structure of the data-path and inserted

1..

the first SCMOS organelles. That same year. J. Baumstarck [Ref. 10 designed ii(i

inserted additional SCMOS organelles.

B. SCOPE OF THESIS INVESTIGATION

MacPitts' pad placement and pad routing algorithms are tremendously ineffi-

cient in both area and speed performance. The order in which pads appear on the

chip is specified by the user in the source file. MacPitts distributes the pail-

evenly as possible along the top. right and bottom sides. No effort to optiniizC ;1v

of a number of possible parameters is attempted.

A second significant problem with MacPitts' designs is the requirement for alI

nets connecting to pads to enter the circuit through the left side. The extremely

long routing paths that result, impact adversely on the chip's speed.

This investigation has two goals. First, to continue the study on the structure

and methods of MacPitts, and, second, to develop, implement and test algorithms

that will do a better job of routing pads than in MacPitts. This thesis introduces ;inrl

documents a set of LISP functions that result in more efficient pad placement and

routing. This is accomplished by first opening up the internal circuit to the outside

on both the left and right sides. Second, area and wire length optimization criteria

are introduced into the pad-placement routines. Finally, net layout algorithms were

modified to minimize the use of inferior routing layers. such as polysilicon.

C. THESIS ORGANIZATION

Chapter II discusses various routing methods. The routers discussed were,

lecred from the many available because of their applicability to specific routing issi S-

within MacPitts, or because of their fundamental value. Chapter III describes the

1.iad and river router and pad placement used by MacPitts. and Chapter IV lescrihe,-

a new pad placement and pad router. Chapter V gives the comparative analyis2I

results between the new and old pad placement and pad routing techniques. ,,i-

clusions drawn from the results of Chapter V, and suggestions for future rese;rli

are offered in Chapter VI. Appendix A cortains the LISP code of the function- ill

MacPitts involved with pad routing and placement. Appendix B contains the LISP

functions that implement the new pad placement and routing process. Appendix C

includes the source files of all the circuits tested.

3

- - . - ,

II. ROUTING TECHNIQUES

Much work has been done on the LSI and VLSI interconnection problem. The

realization that all-purpose, optimal routers are an impractical approach to the

interconnection problem has led to a search for different approaches. The solution

has been to develop routers specialized to interconnect specific geometries. These

routers produce near optimal solutions with reasonable resource requirements by

exploiting circuit characteristics. This chapter discusses the nature of the VLSI and

LSI interconnection problem and surveys current routing techniques.

A. GENERAL ROUTING PROBLEM

The input for an instance of an IC layout problem consists of a set of cells and a

set of signal-net definitions. A cell can be thought of as a rectangular box with pins

on its boundary. Pins specify the location on the cell perimeter where electrical

connections are made, and a signal-net identifies a set of pins to be interconnected.

As a general rule, routing paths are not allowed to cross over cells. Because of its

complexity, the custom IC layout problem is divided into a placement phase and a

routing phase. In the placement phase the objective is to find a cell arrangement

that leads to an "optimum" circuit layout. It must minimize layout area, yet allow

sufficient space between cells for efficient routing. Several interesting techniques

have been developed. With names like synthetic annealing and genetic evolution.

these techniques emulate natural processes and avoid entrapment in local minima

by introducing a degree of randomness into the optimization procedure. This study

assumes that an acceptable cell placement has already occurred.

Once cell locations are established the routing process begins. The routing

problem is defined by a set of cells and a set of signal nets. A solution to the routing

4

C

problem is obtained once all pins specified by the signal-nets are interconnected.

The interconnection process must be completed within the context of technology

dependent design rules.

The previous statement of the routing problem disguises its complexity. Find-

ing an optimal solution to routing even modest-sized circuits is an extremely diffi-

cult task. In fact, routing problems belong to a large class of NP-complete (non-

deterministic polynomial time complete) problems.' No method for an exact solu-

tion with a computing effort bounded by a power of N, where N is the number of

interconnections, is known.
0

Many factors contribute to the difficulty in finding optimal routing solutions.

The most significant are related to the physical and electrical properties of the

materials used in the circuit and to limitations in the fabrication process. The effect
S

these issues have in the design process is often included in the design environment

adopted by the designer. This environment is embodied by a small set of design

rules.

The properties of the various layers used in IC manufacture and their interaction

determine which layers are suitable for routing and how they are to be used. An

ideal routing layer has negligible propagation delays and is electrically insulated
S

from all other layers. Of course, no single layer measures up to this ideal. However,

as the following description shows, some layers come closer to achieving this ideal

than others.
S

An n-channel metal-oxide-semiconductor (nMOS) fabrication technology uses

metal, polysilicon and diffusion layers. Because the metal layer is insulated from

all others, it can cross either diffusion or polysilicon with no significant functional

'NP-complete problems do not yield optimal solutions to any efficient algorithm. The name refers
to thc empirical observation that no solution bounded in time by a polynomial in S, where S is the
number of steps required to solve one instance of the problem, has been found.

5Q

effect. In fact, to connect metal to other layers requires a poly-metal or a diffusion-

metal cut. Cuts are little more than holes through the insulating layer that permit

electrical connections between dissimilar layers. Unlike metal, whenever polysilicon

completely crosses diffusion, an nMOS field effect transistor is created.

Various fabrication and operation mechanisms contribute to alter the final prod-

uct from that conceived by the designer. These include: mask misalignment, vari-

ations in the photoresist edges due to variations in exposure, undercutting of the

oxide beneath photoresist comers, overetching, spreading of diffusion and implan-

tation under gates or near the source drain end, and tolerance of the field-oxide I
windows. Finally, a feature's size can change during operation due to metal migra-

tion.

Rather than struggle with a long list of complex process and fabrication depen-

dent parameters the designer works in an environment consisting of a few conserva-

tive design rules. Design rules can be thought of as allowable mask layer geometries

that permit design variations while guaranteeing correct circuit behavior. The pur-

pose of design rules is to guarantee that, under the cumulative contributions of those

factors mentioned in the preceding paragraph, the circuit operates correctly. There

are many different design rule sets in use today. It is up to the user to select those

rules that best meet the requirements established by the technology, fabrication

process and intended market.

In 1979 Mead and Conway [Ref. 111 formulated a set of design rules for the

nMOS process that have become a standard in academia. They rely on the length

parameter A to determine a minimum feature size. The quantity A corresponds

to the maximum deviation of a mask on the wafer from its intended position. As

a result, the maximum deviation of two features on different masks on a wafer is

2A. If the crossing of these two features is catastrophic for the design, they must

be separated by at least 2A in the design drawing. If not, it is assumed that the

6

..

maximum movement of an edge is O.5A and the edges must be separated by at

least IA. These two rules form the basis for most of the Mead-Conway design

rules. Stricter exceptions are needed to contend with metal width and spacing,

and diffusion spacing. Mead-Conway design rules specify the minimum conducting

path width and the minimum distance between any layer combination. Simplified

Mead-Conway rules are depicted in Figure 1.

The decision to use Mead-Conway rules was based on three factors: they are

relatively simple to use; they are widely accepted by the academic community; and

they are the design rules which the MAGIC [Ref. 12] graphics editor design rule

checker uses. It should be noted that circuit performance degradation, as well as

an increase in chip area could make the A rules unsuitable for commercial use. The

original MacPitts designs did not adhere to Mead-Conway design rules. Lt. J.

Harmon edited the organelles.1 and the control.1 files at the Naval Postgraduate

School to remove all non-conforming structures.

The routing problem is further complicated by a wide choice of optimization

parameters. M. F. Kelly [Ref. 13] conducted a study on comparative router per-

formance. In the study he lists 22 problem specifications (routable area, number

of net-lists, etc.) and 22 performance description characteristics (total wire length,

routing area, etc.). Since there exists no practical algorithmic router, there is no

routing technique available that will route every circuit optimally. A router that

performs well for a specific circuit geometry and a given set of parameters may

yield unfavorable results if either the circuit architecture or optimization param-

eters change. Various parameters can be used to evaluate router performance.

Candidates include:

1. Degree of automation

2. Total wire length

.7

Minimum Width Rules:

Metal U TPolystlhcon _ 2x Difion_ 2x

Minimum Spacing Rules:

4'Pulysilico-n_ Difusion__ 4

Metal 3x ~~Polysilicon2x Dfuin k

Polysilicon 4

Diffusion t

Contact Cut Rules: 2x 11AK

Figure 1: Mead-Conway width and spacing rules

8b

3. Total resistance and capacitance

4. Number of cuts

5. Total routing area

6. Wire density or congestion

7. Number of bends

8. Computer resources required

B. ROUTERS STUDIED

Many routers have been developed to solve circuit interconnection problems.

By one set of criteria they are divided into two categories: algorithmic or heuristic.

The algorithmic suite is represented by Lee's [Ref. 14] expanding wave router and

its variants. Lee's router is algorithmic in that it guarantees to find a path for a

given net provided a path exists. All other routers are based on some heuristic.

A different set of criteria partitions the router suite into either detailed or global

routers. Global routers identify those routing areas that a net must traverse to

make contact with all its terminals. Detailed or exact embedding routers complete

the routing job by actually laying out the conducting paths.

A problem encountered in selecting those routers to be included in this study

when comparing routing strategies is the large numbers of routers currently avail-

able. Since it is virtually impossible to investigate all available routers, a selection

was made based on their fundamental value or their applicability to routing issues

in MacPitts. The routers to be discussed are the Lee router, global router, channel

routers, river router and the moat router.

1. Lee Router [Ref. 141

Lee's router resulted from an endeavor to "... find procedures that will enable

a computer to solve efficiently path connection problems inherent in logical drawing,

9

wiring diagramming and optimal route finding." It is flexible enough to permit

the user to choose among one or more optimization parameters: wiring length,

congestion, layer crossover, etc. All versions route one net at a time, starting

out with a pin of the net and progressively assigning distance values to the cells

surrounding it, as in an expanding wave. This continues until the destination pin is

reached. The optimum path is marked by backtracking towards the source pin by

way of those cells with the minimum distance values. Variations between versions

of Lee's algorithm are primarily the result of different attempts to speed up the

routing process.

All Lee routers suffer from three significant flaws. First, since each net is

routed independently, early routing decisions can significantly degrade or completely

block the routing of subsequent nets. Second, Lee routers require vast amounts of

storage since each cell must be able to store both a distance value and informa-

tion about a backtrack direction. Finally, Lee routers are slow since the wavefront

expands in all directions irrespective of the target's direction. Generally, the algo-

rithm has a time complexity in the order of 0(n 2), where n is the minimum distance

between source and target.

Lee translates the layout problem into a C-space defined by the quintuple

(C,S,N,1',M). In the model:

1. C is the set of cells, C = c1, c2, ... , c' defined by a grid superimposed on the
routable area.

2. N is the 1-neighborhood function, N(c') = c,, c', ..., c,. N(cs) defines a subset
of C whose elements are physically adjacent to c'.

3. S is a finite set of symbols called the alphabet of C.

4. r is a map of C to C x S. For every c' E C, r (c') = (c', si), si ES. In other
words, for every cell c' E C there is mapped to it a symbol s' E S.

5. Let ci and c be two distinct cells in C. By a path p(c', c) is meant the chain
of all cells c0 = ci, c1, c 2,...,c =cd such that c'+' E N(ci) for (i = 0,1,...,m).
By lr(c i , c') is meant the set of all paths p(ci , c) between cells c' and c.

10

6. M is the admission map with domain r(c t,) and range 0, 1. Any path
p(c', cj) is said to be admissible if M(p(ci , cj)) = 1. Otherwise the path is said
to be inadmissible. The set of all admissible paths is denoted by r'(c', c).

Given a set of admissible paths, Lee's algorithm finds the minimal path with

respect to a vector of r functions F = (fl,f 2, ... ,f,). A path p'(c',cj) is said to be

minimal with respect to f, if

for all p(c3,cj) E 7r*(c', cj). A path is minimal with respect to (fi, f2) if PI2 (cs,c1) E

P(c', ci), where P 1 (c', cj) is the set of all paths in r(c', ci) that are minimal with

respect to fl. In other words, p12 is minimal with respect to (fi, f2) if along all paths

minimal in fl, it is also minimal in f2. In a similar fashion, a path p12 3 ... r(ci, cj) can

be found that is minimal with respect to (fi, f2,..., fr). The vector F represents the

parameter or parameters which are to be minimized. Priority between parameters

is determined by position in F. The first parameter to be evaluated has the highest

priority, the second is next, and so forth. This convenient ordering results because

the minimal subset of 7r(c i , d) is first selected with respect to fl. All admissible

paths resulting from this selection become the domain from which minimal paths

for subsequent parameters are selected. This sequence of dependency is repeated

for each function.

Given two cells (c', ci) E C, Lee's algorithm will find those admissible paths

which are minimal with respect to F. The algorithm simply starts at one end, say

CS and marks all N(c') with a symbol of S. It then looks at all N(N(c')) and marks

all that are admissible (not a member of N(c')). It continues this procedure until

it reaches the target cell or until all cells in C are marked. In this case, no path

exists. Finally, from all the possible solutions the optimal one is selected.

The following example illustrates how Lee's algorithm works. In this example

the goal is to find the path between terminals of a net that minimize the number

11

I U I

a. 1 AP 1 AQ .4 A 1

'0- L

I - , I •

I

I #.1

4. 11 8d ' 14 6S 1

K
3* 1 1 4 *

Figure 2: Initial circuit configuration

of other net paths crossed. Lee introduced it as a minimal-crossing problem in

his original paper. Actually, it is a two function problem because it also prevents

routing on the edges (squares marked with x). In the example, net A has already

been routed through squares 6, 5, 16, 15, 14, 3, 2, 11 and 28 (see Figure 2).

The 1-neighborhood function N and coordinate functions dj, d2, d3, and d 4

are defined as follows. Given a cell c', dl(c) is the cell directly above c, d(c3) is the

cell to the right of c', d3(c') is the cell below c' and d4 (c') is the cell to the left of c'.

The vector F is constructed by considering the parameters to be optimized

and the properties of the fabrication materials. For example, in a two routing layer

technology such as nMOS, the routing process can be simplified by assigning one

routing layer to horizontal wires and the other to vertical layers. If a wire has

to change direction a via is used to connect the two dissimilar layers. For such a

minimal crossing problem the vector F consists of one function f which is described

as follows:

1. f ')(c',c)) = 0. The cell mass of a cell routed to itself is O.

12

* ~ * *'* % * %'V..w '.''S;

2I

2. If s(d) = blank, then

min ff(p(,(c)), Ic eN(-)) over all j
f(p(cc)) = J for which (,(c-,a has been defined;

undefined otherwise

The cell mass of a blank cell equals the minimum among the cell masses of
its 1-neighbors.

3. If s(c') = -,then

(Mfinfl{f(P(c..dl(c))),f(P(c*,d 3 (c')))})+1

f(p(c*, c)) ={ if either one of the values of f is defined;

undefined otherwise

The cell mass of a cell with a vertical wire is the minimum among the cell
masses of its 1-neighbors plus one.

4. If s(c') = , then

f(p(c, c)) - if either one of the values of f is defined:{ undefined otherwise

The cell mass of a cell with a horizontal wire is the minimum among the cell
masses of its 1-neighbors plus one.

5. If s(c') = LJ, f or 1, then f(p(c*,c")) = oo The cell mass of a cell with a via
is large enough to prevent routing through it.

6. If s(c) = x, then f(p(c*, c')) = oo The cell mass of edge cells is large enough
to prevent routing through it.

The following terms are used throughout the discussion of the minimal cross-

ing example:

1. A cell list L consists of names of cells which have been looked at and still have
admissible 1-neighbors that have not been assigned a chain coordinate.

2. Cell mass is the sum of f as it follows the path from the source cell to the
current cell being examined.

3. Chain coordinates are assigned to each cell that has been investigated. They
specify both the direction to the previous cell and the cell mass.

A solution to the routing of net B in Figure 2 is shown in Figure 3. The

initial L list starts out with cell 18, the source cell. Admissible 1-neighbors include

13

_-w

V,.-

i? ei 4 IS I'S IS

r -

(401 ,,.i) (e, (4,l)

A x L A

S.oi (P,0Q18

(9.01 C-,0) ('e,O (e, 0) (°" 0 I e-,O*

Figure 3: Cell configuration after Lee algorithm with a minimal-crossing parameter
is applied

[5, 17, 19]. Notice that cell 39 is not an admissible neighbor of 18 because it sits on

the edge. Based on the definition of f, cell 5 is assigned a cell mass of 1 because

it already has a vertical wire. Cells 17 and 19 have cell masses of 0 because they

are blank cells. Since their cell masses are minimum, cells 17 and 19 are appended

into L. Furthermore, chain coordinates (I , 0) and (T , 0) are assigned to 17 and

19, respectively. The 0 in the chain coordinate refers to the cell mass. The arrow

points the path back to the source cell. L now consists of cells 17, 18 and 19.

The process is repeated. Now the admissible 1-neighbors to list L include

5 and 20. All other cells are inadmissible because they are either edges (cells 36,

37, 38, 39 and 40), have vias (cell 16) or have terminals (cell 6). The cell masses

assigned are 1 and 0 respectively. This time, cell 20 is added to L and is assigned

a coordinate chain of (T , 0). Also, 17 and 19 are removed from L since all of their

possible 1-neighbors are either inadmissible or have alredy been assigned a chain

14

'I

9

17 16 15 14 1.3 3

7 7
18 5 4 3 12 29

(0) (4-,) (4-2) (*--3) - 4-.5)
19 6 1 2 11 28

A X L A

9 27

Figure 4: Cell configuration after Lee algorithm with a minimum-wire-length pa-
rameter is applied

coordinate. Repeating this process leads the pointer to cell 27. L now includes cells

18. 10 and 27. Admissible 1- neighbors are cells 5 and 11 with cell masses of [1. 1].

respectively. L now consists of cells 5 and 11. The algorithm has determined that

it is not possible to route net B without crossings. Chain coordinates of (--, 1) and

(T , 1) are assigned to 5 and 11, respectively. The process continues until the path

with minimum cell mass reaches the target cell as shown in Figure 3. Notice that

this path has one crossing at cell 11.

Figure 4 shows the same problem routed with respect to a minimum-wire-

length parameter. In this instance, different parameters yield different results tot

the same circuit. It is precisely this flexibility that has made Lee's algorithm one

of the most popular Printed Circuit Board routers.

2. Global Router

Global routers assign nets to routing regions but leave the actual track layout

to exact embedding routers such as the Lee or channel router. They are effective

in reducing seemingly intractable problems, into a series of less complex ones. This

15

divide and conquer approach can reduce computation times drastically. Global

routers must provide certain essential information for the exact embedding router

to complete the routing process. At a minimum this information must include:

1. The set of routing regions traversed by each signal net.

2. The set of edges crossed by a signal-net in each routing region.

3. A set of strands specifying which crossings must be connected within a region.
A net may have more than one strand within a region. Such cases result in
tree-like interconnection structures.

The global router algorithm is similar to the Lee router algorithm. Like

Lee's algorithm, the router is concerned with one path at a time. It begins at the

source and expands outward, evaluating a cost at each routing area. The algorithms

differ in that global routers evaluate all routing areas in the circuit (using Lee router

terminology, every routing region is assigned a cell mass for every net-list). Once cell

values are assigned, the optimal path is determined by backtracking from destination

to source as in the Lee router. Before starting a more detailed description of the

algorithm, some definitions are in order:

1. Routing regions must be defined by the global router or by some prior al-
gorithm. A common practice is to extend the horizontal and vertical cell
boundaries until obstacles (other cell boundaries) are reached. The rectangu-
lar areas that form from the intersections of the various edge extensions are
the routing regions (see Figure 5).

2. Channel capacity refers to the number of crossings that a routing region can
support.

3. A fence-list consisting of all nets having pins within a routing region is con-
structed to ensure that crossing space is available for these ca-, regardless of
when that signal-net is routed.

4. Edge values represent the cost assigned a net-list for traversing any routing
region edge. This is a dynamic value. As more nets are allowed to cross a
channel, the channel edge values increase. When the channel is saturated, an
arbitrarily large number representing infinity is given to that region's edges
to prohibit any other nets from using that channel.

The global router initiates its path search at the signal-net source and expands

in all directions (vertical and horizontal) until all routing regions have been tested.

16

p

CELL 1 CELL 2 CELL 3

ROUTING RA RARARAR
AREA #3 #45 # 7

CELL 4 CELL 5 CELL 6 '
9

)CHANNEL

HORIZONTALTRACK CELL 7 CELL 8 .ELL 9

VERTICAL,,$
TRACK VERTICAL

CHANNEL

Figure 5: Partitioning a chip into global wiring cells,

At each region, a value representing the total routing cost from the source to the

current region, is calculated. A cost value is computed by adding the cost of crossing

into the new area to the value calculated at the previous area. If this value is less

than the current value for that cell, it becomes the new value. Otherwise, the old

value remains in force. Once all regions are assigned a cost, the optimum path is

determined by backtracking along the minimum cost routing areas until the source

is reached. As with the Lee router, different optimization parameters can be used

to meet specific design goals.

Figures 6 - 10 describe events that lead to the selection of a path for net .4.

The initial edge values in Figure 6 are the result of nets that have already been

routed. Scores at the fifth and sixth step and at the end of the forward propagation

are shown in Figure 7 - 9. The number inside each square is the minimum sum of all

the edges crossed to get to that square from the source cell. Consider, for example,

square (4,2), i.e., the cell in the 4th column and 2nd row. The cost at square (4, 2)

at step six is the minimum of the cost of moving to (4,2) from square (3,3), which

17

8 11 314 619 623 F .9_,++ + 4+ 5+ , + 7+2-_
34 .3 7 5 10 515 S_18 ,22 4 2

5 3 j A ti 6 6 12 !; 21 9 30 5 35 4f +4 + -1+ f+ ,-+ :+4+ -
4 7 5- 4 4 8 715 9,24 t? 32 t 2

10 .2" 7 " 10 7 16 25 9&

12 4 11 2 139P222 . 7 6

19 4 15 3-z16 4 5r4--

I -
I119 If S 6 S" 4 a" ,

Figure 7: Cell values after step .5.

19

I I I i I
7 8 11 T 14 196 23 .726 e 4

4 J57 5 10 5 15 J1B -422 4 26

r .o+4+H 9+9F4
5 3 J -A c 6 6 12 9 21 9 30 5 35

4 7 54 4 8 715 924 Y932 638 2

10 j 7 e 10 - 16 9 25 934

12 411 213 922 224 -4 -6
I I I

I~~~~ IIq41 . 6 2 7 c

I 2 3 ' 19 18 5 A Yr

Figure 8: Cell values after step 6.

20

1 J - T I I
8 T 11 J 14 1 19 !; 23 J 26 I 33 4 30

I4 ,7 J 10 5"15 518 -;22 426 220

I 3 J, A 6 6 6 12 IQ21 9 30 5 35 432
744- 7-

7 !r 4 a8 715 9 24 e 32 638 239

+ ,+ J_+ ,+ 4+" /1 o ;16 9 25 ; 131 :

Z 12 4 11 2 13 21 2 23 d 30 17 36 6 45
I i I I

19 4 15 J 16 4 20 5 25 3 28 34 j 37

' 23 4 19 218 5 23 A, 28 T 31 4 35 I

Figure 9: Cell values at the end of forward propagation.

21- . -

S I I I i I I

8 J11 314 . 19 623 326 " 33 4 30

I J 7 5 10 S 15 J 18 -22 426 20

S 3 3 Ai 6 6 m 12 921 Q 30 5 35 4 32

7 '8 "15 9 24 .. 32 e 38 2 39_r :+., / , + .? 4+ '7
Tj1037 f10 7 16 9 25 ,3 41 3 42

12 411 2 13 921 2 23 C 30 7 36 6 45

19 4 15 3 1 420 5 25 2 6 34 337

23 4 19 2 18 5 23 6 28 3 31 4 35 x

Figure 10: The backtrace route. S

S

22

11 lo l

3. Channel Router

Channel routers axe perhaps the most widely used routers today. Their pop-

ularity has resulted in the development of a wide collection of channel routing

techniques that efficiently interconnect more diverse architectures. The first chan-

nel router was introduced in 1971 by Hashimoto and Stevens [Ref. 15] to route

ILLIAC IV computer control boards. These two layer boards consisted of up to 165

identical dual-in-line IC packages in an 11 row by 15 column matrix. The channel

router was developed to exploit the large regular routing regions created by this

geometry.

As described by Rivest and Fiduccia [Ref. 16], a channel routing problem is

specified by:

1. A channel length A.

2. Top and bottom connection lists T = (TI, T2, ..., TA) and B = (B1 , B 2, ... , BA),
where B and T are the net names for the pin at the ith column of the channel.

3. Left and right connection lists L = (L 1,L 2,...L,) and R = (R 1, R 2,...R,)
specifying which nets extend through the ends of the routing channel.

A channel routing solution is specified by:

1. A channel width w representing the number of tracks used.

2. For each net n, a set of connected horizontal and vertical wire-segments whose
endpoints are grid points (x, y) with 1 _< y _< w and 0 < x < A. Segments
with endpoints (i, 0) or (i, w + 1), where i is the ith column of the channel,
must be included in T or Bi. Nets in L must have endpoints at x = 0,
while nets in R must have endpoints at x = A + 1. Segments oriented along
the channel length are called tracks and usually are assigned metall, the
layer with the best performance characteristics. Segments that run across
the channel are usually shorter and are assigned a routing layer with inferior
electrical properties, such as polysilicon. When required, the different layers
are interconnected by means of cuts or vias.

To distinguish it from its descendants, the original channel router is commonly

referred to as the left-edge channel router. It tries to minimize the channel width,

w, by maximizing the number of nets sharing each track of the channel. This is

done in the following manner. Nets are sorted by the location of their left endpoint.

23

- .- - - ~ - .r V V'm ~ ~ - N.

---:. __ __ l

Figure 11: The left-edge channel router.

In the example on Figure 11, the sorted list is [1,2,3,4,5,6,7,8,9,10]. The router then

selects the first endpoint, 1, and places it in the lowest left corner of the routing

:, tea. It next searches for a segment that does not overlap net 1. In this case, net

6. As nets are selected, they are removed from the sorted list. This process is

repeated until no more nets can be placed in the first track. The algorithm then

starts with track 2, which in this example is occupied by nets 2, 7 and 10. The

process continues until all nets are assigned to a track. The track selections made

by the left-edge algorithm are shown in Figure 11.

The track assignment method used by the left-edge channel router is guaran-

ted to find an optimal solution to a channel, provided no vertical constraints are

present. If such constraints do exist, the left-edge router is not equipped to handle

them. Vertical constraints occur when pins from different nets are placed opposite

each other in a column. This forces one net above the other to avoid shorting the

nets. Figure 12 shows a vertical constraints between nets 1 and 3, nets 1 and 2. nets

3 and 4, and others. Vertical constraints can be represented by a vertical constraint

graph. A vertical constraint graph is a directed graph with its nodes represent-

24

it

71.

Figure 12: A channel with vertical constraints.

ing nets in the circuit and its branches depicting the relative position between the

horizontal net segments in the channel.

Figure 13.d depicts the vertical constraint graph of the channel shown in

Figure 12. The vertical constraint graph can be constructed iteratively by examinin'g

the nodes at each column of the channel. Starting at the left side of the channel

described in Figure 12 net 3 is above net 1. This is represented on the vertical

constraint graph by placing node 3 above node 1, and connecting them with a line

as shown in Figure 13.a. In column 2, net 1 is above net 2. Since net 1 is already

part of our graph, the line from node 1 is extended to node 2 as shown in Figure

13.b. In the next column net 3 is above net 4. The graph now looks as in Figure

13.c. This process continues until all columns have been examined. In the example,

=
25 !

this occurs at the right end with the column containing net 5 only. Since net 5

has no vertical constraints, it is represented by a single isolated node. The vertical

constraint graph for the channel is illustrated in Figure 13.d.

The left-edge channel router fails to find a solution to channel problems with

cycles in the vertical constraints graph. Cycles in the vertical constraint graph

are called vertical constraint loops. As shown in Figure 14.a and 14.b, loops occur

when there are at least two distinct paths connecting two nodes. As Figure 14.c

shows, solutions to these problems require that one of the two nets be split into two

horizontal paths. This is called doglegging.

The original dogleg channel router was proposed by Deutsch [Ref. 17]. -It

overcomes the vertical constraint problem presented above by breaking net 1 into

subnets. Net la connects the top two pins and net lb completes the connection

to the bottom pin. The new vertical constraint graph is shown in Figure 14.d. L

Dividing a net into subnets is not always possible because nets can only be divided

at columns where their pins are located. This means that cyclic loop problems can

be solved provided the net has at least three terminals. Cyclic loops involving two

terminal nets cannot be routed. Such a channel is illustrated in Figure 14.e.

Finally, a very different approach is taken by the greedy channel router pro-

posed by Rivest and Fiduccia [Ref. 161. Instead of routing the channel on a row

by row basis as done by other channel routers, the greedy channel router routes

one column at a time starting with the left edge. In each column it performs the

following steps:

1. Makes connections to any pins at the top and bottom of the channel.

2. Combines as many as tracks as possible iy merging or collapsing nets that
currently occupy more than one track.

3. Reduces the distance between tracks occupied by nets still occupying more
than one track.

4. Moves a net up if its next pin is on top of the channel or down if its next pin
is on the bottom.

S

26

'A.

2

(a) (b)

2 27

(c) (d)

Figure 13: Making the vertical constraint graph for channel of Figure 12: (a) first
column, (b) first two columns, (c) first three columns, (d) final solution.

4:

1,OOV 1 -D wm 7MI, 2,KUL-7k' 1. 1 lb

2 2

(a) (b) (C)

la

22

l b

(d) (e)

Figure 14: Vertical constraint loop: (a) channel, (b) graph of (a), (c) solution, (d)
graph of (c), (e) channel that cannot be subdivided

O-

28

'.3

p

Figure 15: A channel routed by the greedy algorithm.

5. Adds a new track if a pin can't be connected because the channel is full.

Figure 15 shows a channel routed by the greedy algorithm.

The greedy algorithm still suffers from some of the problems afflicting other

algorithms. First, since it looks for local optimums, conditions could be created

that result in unworkable routing situations later on. Second, a cycle in the vertical

constraint graph might make the channel impossible to route in the available chaninei

length. The channel in Figure 16 provides such an example. Nets 3 and 10 cannot 1,e

completed because they are extended to the right edge of the channel. To complete

this problem, the channel length must be increased by two columns.
"Rr u.

The river router offers a fast and efficient exact embedding technique for the

interconnection of a specific type of routing problem in one or more routing layers.

29

W 'r -

InI

Figure 16: A channel unroutable, by the greedy algorithm.

30

Figure 17: The river routing problem

It is the prescribed router when faced with:

1. A restricted or fixed routing space.

2. Terminals located on opposite sides of the routing area.

3. When only one routing layer is available, terminals are positioned so Chat no
-crossovers" are necessary.

The router may be equipped with optimization routines to minimize the river width.

The river routing problem is more formally defined in the following manner.

Given a rectangular routing region with fixed dimensions, a set of n connection

points ordered from left to right along the top T = (TI, T2,..., T,), and a set of 77

connection points ordered from left to right along the bottom B = (BI, B.. B,).

the river router generates n wires to interconnect each (Bi, 2) pair (see Figure 17).

The wires must lie within the fixed routing region. If a one-layer river router is

used, no "crossovers" are permitted.

Although the river router solves the problem given to it efficiently, few ci- cuits

spontaneously produce layouts suitable for river routing. As a result, river routing

31

" " ~~~~~~ ~~ ~~~~ ~ ~ ~ ~ ~1%,N llllll ~'lll III[lUofIIIlll II

almost always presupposes less than optimal cell layouts as the order of pins in one

river bank is made to correspond to the pin order across the river. These changes

inevitably lead to less efficient designs. MacPitts' approach to routing between

data-path and controller provides a clear example of this problem. To comply

with the requirement for no crossovers imposed by the river router, MacPitts must

compromise the optimization of either the data-path or controller layout. Since the

data-path is usually the more complex structure, MacPitts decides to make the pin

order of the controller correspond to the order in the data- path. The results are

long horizontal polysilicon runs that span the entire controller, and a controller that

may be larger than necessary.

5. Moat Router

The final step in the layout of an IC is the routing of internal cells to a ring of

pads on the circuit periphery. The peculiarities of the pad routing problem generate

a new set of heuristics which make the design of a routing scheme to specifically

solve this problem worthwhile. Since the region to be routed is usually in the shape

of a moat, the term moat router was coined by R. K. McGehee [Ref. 181.

The pad routing problem is actually an instance of the channel or river routing

problem. In fact, the moat is really just a channel bent into a ring. The horizontal

tracks found in the channel router are converted into concentric circles and vertical

columns are transformed into radial columns (see Figure 18).

Moat routers can use one or more routing iayers. As with channel routers,

when two routing layers are available, the better conductor is assigned to wire the

longer lengths. In the moat router this corresponds to the layers of concentric

tracks. Since the radial columns are usually much shorter, the poorer conductor is

used there.

32

e14 h9 r9 U v h i r, U-

Figure 18Cocnrctak n ailclm emtyo otruigrgo

...AF1
3a Tw 3wunNf~3 A

~~~~Figure 19. Mocnrctak n ailclm emtyo oat routing direcionamiut

------- -----

..... ....

33A

..... ....

Vwgo no i -gt Uvre me 101M. - ~



Though similar in many respects to the channel and river routers, moat

routers introduce a unique problem. Because a moat is a closed loop some am-

biguity in selecting the best routing direction can occur. Within a channel there is

no ambiguity in routing a net-list. In a moat, a two terminal net can be routed in

two ways, a three terminal net can be routed in three ways, and so on (see Figure

19). Selecting the correct routing direction is crucial if optimal designs are desired.

C. SUMMARY

Selecting a specific router from the many available can be a very difficult prob-

lem. The global router divides a large problem into many smaller and simpler ones.

The versatile Lee router is an exact embedding algorithm that will find an optimal

route for a net, if a solution exists. Its demand for computer time and resources

however, cannot be always satisfied.

Channel routers require much less information but are limited to those problems

that can be expressed in terms of a well defined routing region with net connections

at the edges. The left-edge router results in optimal solutions provided that no

vertical constraints exist in the channel. Vertical constraints and cyclic constraints

are handled efficiently by either the dogleg or greedy channel routers.

The moat and river routers are actually channel router variants. The moat

router differs in that its routing areas form a ring. It is well suited to solve the pad

routing problem. In the river router all nets have a terminal on each "river bank".

When only one routing layer is available, the net-lists must be arranged so that no

crossovers occur between nets.

34



A

III. ROUTING IN MACPITTS

The MacPitts compiling process produces a predictable design architecture con-

sisting of a variety of functional and physical components. To completely intercon-

nect a circuit, a variety of ad hoc routers, each intimately tied to the specific problem

at hand, are used. In this section MacPitts' approach to routing between data-path

units, between data-path and controller, and between the interior circuit body and

pads is examined. The LISP functions discussed in this section are enclosed in Ap-

pendix A. Throughout this thesis, MacPitts' function names will be indicated by

bold font and function arguments by italics.

A. ROUTING IN DATA-PATH

Starting with basic building blocks called organelles, MacPitts assembles a data-

path hierarchically. The data-path can become very complex. An organelle is a

hand-crafted one bit representation of a particular logic function, arithmetic func-

tion, shift function or comparison test. For an n-bit word, n organelles are stacked

vertically to form a unit. A description of the MacPitts data-path design and rout-

ing organization is presented by E. Malagon [Ref. 9].

All inputs to and outputs from an organelle are routed to the data-path bus for

transmission. Figure 20 illustrates a typical data-path design. Buses are located

directly above the organelles in each bit slice. They are easily identifiable by the

long polysilicon runs.

One curious feature of MacPitts designs is the requirement for all connections

from the pads to enter through the left side. This has far reaching implications. For

example, a signal produced at the far right end in the data-path must be routed

35



Figure 20: Typical MacPitts data-path design

across the entire data-path in polysilicon. For large circuits, polysilicon wires in

excess of 1000A are produced.

The data-path bus is produced by get-buses-from-data-path. This function

calls on get-buses-from-unit-lists to collect all the participating bus terminals

from the various data-path sources. The list of sources include: internal inplits.

registers, multiplexers, output ports and organelles. The function that collects all

the terminals with connections to pads is get-basic-buses-from-port-output-

unit. This function uses the macro make-left-tip to insert the attribute 'left' to

every port-output point. The left attribute causes the bus wire to extend from the

internal connection to the left edge of data-path. If the macro make-right-tip

were used instead, all data-path connections to the pads would take place thirmigh

the right side.

B. ROUTING BETWEEN DATA-PATH AND CONTROLLER

MacPitts' control section performs Boolean logic operations on various signals

to generate signals that drive the multiplexers in the data-path. The controller logic

is obtained by means of a NOR gate array called a Weinberger array. Weinberger

arrays offer advantages such as a relatively compact structure and no need to cross

36



signal nets. The controller connects directly to all control signal pads, tri-state

pads, clock super-buffers and data-path.

Routing between data-path and controller, as well as between super-buffers and

controller, is performed by a single layer river router with a non-optimal, but effec-

tive, channel-width calculation routine. The routing layer used in nMOS technology

is polysilicon. This choice simplifies the routing algorithm and reduces area re-

quirements (due to its smaller width). Unfortunately, when long wires are required,

polysilicon's high resistance can slow the circuit down significantly.

On the positive side, the minimum feature size for polysilicon is less than that S

of metal, the only other practical alternative in nMOS technology. Each polysilicon

track requires 4A units, compared to 7A units for metal. A track is the sum of

the minimum layer width and the minimum spacing between layers, as specified

by the Mead-Conway design rules. A second advantage, relevant only in nMOS, is

that using polysilicon eliminates two poly-metal cuts per net. These cuts would be

required to cross over the power and ground rails located along both river banks.

Since each cut contributes an average capacitance of 9.6 x 10 - 4 pf/mil2 (based on

metal over poly capacitance of 0.6 x 10 - 4 in 4M nMOS technology [Ref. 1: Table

4.5, pg. 135]), the use of polysilicon, particularly in small circuits, may result in

superior performance. This is of no consequence in SCMOS where two metal layers

are available.

The problem with polysilicon is its relatively long signal propagation time de- S

lays. Polysilicon is approximately 100 times slower than metall [Ref. 1: Table

4.7, pg.136. As routing material, it can be used without appreciable circuit per-

formance degradation as long as 7,, < r., where r, and r refer to routing wire

delays and gate delays, respectively. Under normal conditions, this relation holds

true for polysilicon wire of lengths less than 200A. Above 200A, degraded circuit

performance resulting from signal routing can be expected. Unfortunately, routing

37



I

Figure 21: Typical MacPitts controller design.

lengths greater than 200A are common in routing from data-path to conti'oller. In

fact lengths in excess of 500A are found even in modest sized circuits.

Regardless of the layer used, the single most significant problem with the dara-

path to controller router is its use of a single routing layer. This means that, since

crossovers are not allowed in the routing area, the terminal order in the controller

must correspond exactly to that of the data-path. This is a serious design constraint

that results in large, slow controllers. A typical MacPitts controller is illustrated in

Figure 21. Notice the long horizontal polysilicon runs used to interconnect sigials

that interact with each other. Long runs could be avoided if the controller termils

were ordered to optimize the controller and not in response to the order of terminals

in the data-path. Also, longer runs require more tracks, because less track sharing

is possible. This increases the controller height and area. In summary, a one layer

router has a negative impact on both controller performance and size.

38

6Q-J



In the process of laying out both the data-path and the controller, points with

the 'river' attribute are created. A point is an L5 structure consisting of a point-

name, x-coordinate, y-coordinate, layer and up to three attributes. L5 is the LISP-

based layout language used by MacPitts. Attributes are keywords that either iden-

tify a point to a process, or give qualitative position information about that point.

In this instance, 'river' identifies all interconnections between data-path and con-

troller that need to participate in the river routing process.

The call to river originates in layout-object. Before calling river, layout-

object first brings together all points that need to be interconnected into a net-

list. It then formats this list as required by the river router.

Net-list extraction is accomplished by obtaining the desired information from

larger lists. To this end, the variable top-part, which includes all details necessary to

lay out both flags and data-path, and bottom-part, which contains the details to lay

out the controller, are created. From these, the variables top-bank and bottom-bank

are formed. They contain the x-coordinates, sorted in increasing order, of all points

in top-part and bottom-part with the attribute 'river'. By design, the ith element in

top-bank corresponds to the ith element in bottom-bank.

River is called in the following fashion:

(river 'NP 2 (wing-span bottom-part) top- bank bottom-bank)

River input parameters are: layer, width, stretch, left and right. In nMOS technol-

ogy the layer NP indicates polysilicon. The width is 2A, the minimum polysilicon

width allowed by design rules. Stretch will be discussed momentarily. Left and right

correspond to top-bank and bottom-bank, respectively. This change in names, top to

left and bottom to right, reflects an actual change of orientation that occurs while

in river. The original orientation is recovered by rotating the output list, river-

layout, clockwise before appending it to internal-layout. Internal-layout contains

39



left pad routing
region DATA-PATH

CONTROLLER

Figure 22: Wing layout

everything necessary to produce a layout of the circuit body: top-part, bottom-part,

wing-layout river-layout and skeleton.

Stretch represents the height of wing-layout. The name reminds us how far each

net must 'stretch' past the bottom river-bank to reach its terminal on the controller.

It is determined by calling on wing-span with bottom-part as an argument. Wing-

span extracts all points with the 'wing' attribute from bottom-part. The attribute

'wing' identifies those control signals from the controller that connect to pads. For

each such point, wing-span increments stretch by 5A. Finally, an additional 1A is

tacked on to stretch. Why does wing-span require 5A between tracks while river

needs only 4A? As illustrated in Figure 22, since each 'wing' net terminates on a

poly-metal cut during pad routing, the extra 1A is necessary to satisfy design rule

requirements for 2A separation between poly and poly-metal cuts in the left pad

routing region.

The river routing process is performed by river, rivern, river-span and river-

spanl. As their names imply, river-span and river-spani calculate the required

river width to accomodate all nets. Although not an optimal algorithm, river-span

usually finds optimal or near optimal solutions. River-span uses layer, space, left

40



2 2

Figure 23: Solution to river routing problem. (a) MacPitts solution. (b) optimal
solution.

and right as parameters. It determines the number of tracks required in the channel

by calculating the run-length - the maximum number of consecutive nets for which

the x-coordinate of one bank is greater than that of the other. For example, a net-

list can be described by ((1 12 16 29) (5 10 25 33)). The list enclosed in the first

inner parentheses represents the net terminals on the top-bank, while the list in

the second parentheses corresponds to net terminals on the bottom bank. For this

net-list river-span returns a run-length value of 2 because this is the number of

consecutive nets where the terminals on one bank are consistently either greater

than or less than the terminals on the other bank. In this case the nets are (20 301

(40 50). The product of the run length and 4A. the minimum space required per

polysilicon track, gives the span of the river. The algorithm is not optimal because

it fails to recognize that nets which meet this condition and do not overlap can share
I

the same track. This illustrated in Figure 23. MacPitts' solution to the problem

(Figure 23.a) uses two tracks. The optimal solution, shown in Figure 23.b requires

only one track.

41

~V%~%~%N -:~. S~.'~~5*,



The real workhorse in the river router is rivern. To function, riverl needs

the arguments used by river as well as span, where and flag. Span is the distance

calculated by river-span. Where is the y-coordinate of the track which the net

being routed is to use. Flag can take as values either "down", "up" or "straight".

"Down" indicates routing in the downriver direction T, > Bi. "Up" indicates rout-

ing upriver when B, > T. "Straight" corresponds to routing across the river when

T = Bi. Essentially, flag provides a means for the algorithm to 'remember' whether

the previous routed net was routed upriver, downriver or straight across. Flag is

important to determine the value of where during the next iteration.

River employs a simple and effective recursive routine to route all nets between

left and right in the manner shown in Figure 23.a. Figure 23.b illustrates the same

problem optimally routed. Since the nets are pre-sorted, applying the basic LISP

function 'car' to both top and bottom-banks yields the terminals that need to be

routed in the current net. Applying 'cdr' simultaneously to top-bank and bottom-

bank exposes the next net.

River1 first compares the x-coordinates of the ith net by applying the operators

=,>, and < to the ith elements in left and right. The following listing illustrates

all the possible cases.

1. IF lefti = right,? THEN

* A single vertical polysilicon wire segment is laid out between net termi-
nals.

* flag = 'straight'

2. IF left, > righti? AND

- IF flag = 'down'? THEN

* A vertical layer segment is laid down from data-path to where.

* A horizontal layer is laid down from left to right.

* A vertical layer is laid down from where to the controller terminal.

* where = where + (width + space).
* flag = 'down'

42

* 1- 1 44 - 'IM



- IF flag = 'up'? THEN

* A vertical layer segment is laid down from data-path to the first
track.

* A horizontal layer is laid down from left to right.

* A vertical layer is laid down from the first track to the controller
terminal.

* where = where + (width + space).

* flag = 'down'

3. IF lefti < righti? AND

- IF flag = 'up'? THEN

* A vertical layer segment is laid down from data-path to where.

* A horizontal layer is laid down from left to right.

* A vertical layer is laid down from where to the controller terminal.

* where = where - (width + space).

* flag = 'up'

- IF flag = 'down'? THEN

* A vertical layer segment is laid down from data- path to the last
track.

* A horizontal layer is laid down from left to right.

* A vertical layer is laid down from the last track to the controller
terminal.

* where = where - (width + space).

* flag = 'up'

C. ROUTING TO PADS

There are three phases to the process of routing from the circuit body to the

pads. They are pad placement, net extraction and net layout. MacPitts' approach

to all three is very inefficient. There are three significant flaws with the layout

method used by MacPitts. First, since all inputs into the circuit body must en-

ter through the left side, extremely long routes and unecessarily wide channels are

I

43

'W.%



Mp

formed. This problem is not caused by the pad router functions, but by the as-

signment of the 'left' attribute by data-path, to all pad connections. A detailed

explanation is given in section III.A. Second, pad placement is only allowed on the

top, right and bottom sides. If the pads do not fit, the chip is extended in length

or width or both until all pads can be accomodated on those three sides. Finally.

pad position is dependent on the pad number assigned by the user in the source

file and not on any optimizing algorithm. The combined effects of these problems

are the large empty spaces usually found in circuits designed by MacPitts. This is

illustrated in Figure 24.

1. Pad Placement

MacPitts' pad placement algorithm lacks any 'intelligence' to improve either

circuit performance or area utilization. The functions directly involved in this

process are place-pins, extend-right and extend-top.

Interestingly enough, place-pins is capable of placing pins on all four sides.

It uses a four case conditional to assign pads with pin numbers less than number-

pins-per-side to the top; it then assigns those pads with numbers less than twice

number- pins-per-sides to the right side; next, pin numbers less than three times

number-pins-per-sides are assigned to the bottom. Any remaining pads are assigned

to the left side. Pin numbers are assigned to pads in the circuit source file.

Why then doesn't MacPitts place pads on all four sides? Because number-

pins-per-sides is calculated by dividing the total number of pads by three and then

rounding the result up to the next integer. Thus, circuits with 16, 17 and 18 pads

all yield 6 as a value for number-pins-per-side. By the time place-pins gets to the

left side, there are no pads left to place.

The functions extend-right and extend-top are used if the current circuit

length or width is insufficient to accomodate the number of pins assigned to it.

These functions are independent of each other, responding only to requirements

44



IL3

Figure 24: Routing pads in MacPitts

45

.... ------- .....



set by number-pins-per-side. For example, an 18 pad circuit with a length that

accomodates 10 pads and a width that fits only one will be extended by extend-

top until the six pads required by number-pins-per-side fit on each side; a five-fold

increase in area. The fact that the original dimensions can accomodate 22 pads

is irrelevant. These extensions can have a drastic impact on the final chip size as

demonstrated by this example and Figure 24.

2. Net Extraction

The functions directly involved in the extraction of nets are: extract-nets,

extract-basic-nets, order-basic- nets, rotate-basic-nets, extract-subnets and

extract-[side]-subnet. 1 All the data necessary to form net-lists can be found in

the parameters pins-layout and internal-layout. Internal-layout contains every de-

tail necessary to actually lay down the circuit body. Likewise, pins-layout contains

everything needed to produce a layout of the pads.

MacPitts starts the net extraction process by merging internal-layout to pins-

layout. This list is then operated on by extract-basic-nets. This function serves

two purposes. First, it makes a list of lists, with the inner lists containing all points

with the same name. Second, it retains only those points with the attribute 'ring'.

The ring attribute identifies those terminals that participate in pad routing. To an

input such as:

(((1 1) 10 20 nil (nil nil nil)) ((port input (a 1)) 0 100 nil (ring left nil))
((port input (a 1)) 100 200 nil (ring right nil)) ((phic) 0 50 nil (nil left ring))
((phic) 100 200 nil (nil top ring)))

'Many functions in the net extraction and net layout business come in four flavors: top, right.
bottom and left. For each function type all flavors operate in the same fashion. For clarity and
brevity, the generic [side] will be inserted in place of the specific flavor whenever the clarity of the
issue being discussed won't suffer from the substitution.

46

% lip

-',.*% '," ,:.. ,'*' W * *,:. . . . VI



extract-basic-nets returns the following list:

((((port input (a 1)) 0 100 nil (ring left nil))
((port input (a 1)) 100 200 nil (ring right nil)))
(((phic) 0 50 nil (nil left ring))
((phic) 100 200 nil (nil top ring))))

Next, each net in basic-nets is arranged in proper order by order-basic-

nets. This is accomplished by sorting each net with respect to an operator supplied

by basic-net-point-further-left?. This function examines the attributes of each

of the two points and supplies the correct sorting criteria to handle the specific

problem. For example, given the net:

(((phic) 0 50 nil (nil left ring)) ((phic) 100 200 nil (nil top ring)))

the operator (< (point-y pointi) (point-y point2)) is supplied. In this case point-y

of pointl and point2 equal 50 and 200, respectively, so this net is already in the

correct order.

At this juncture each net consists of at least two ordered points. The nets

are now processed by a rudimentary global router. It is rudimentary because,

while it does assign routing regions to each net, it does so with little emphasis on

optimization. This global routing function is the responsibility of extract-sub nets,

extract-subnet and extract- [side] -subnet.

These functions work in a straightforward fashion. Remember that each net

point may have up to three attributes. The set of allowable attributes depends on

the operation that the point is destined for. For example, all points involved in

pad routing have the attribute 'ring'. A second attribute identifies the side where

the point lies and can take values of either 'top', 'right', 'bottom' or 'left'. The

third attribute gives additional position information and can take values of 'first',

'last' or 'nil'. Extract-subnet queries the first point of a net to determine which

side it is on. It does this through the macros is-point-top?, is-point-right?,

is-point-bottom? or is-point-left?. The net point must respond with true to

47

%U



one of the four macros. That macro will in turn call extract-[side]-subnet, where

[side] is the side in the point's attribute list. For example, if the first point is on

'top', extract-top-subnet is called.

The various extract- [side]-sub net functions supply points necessary to al-

low continuous routing of a net from source to target. Continuity cannot be guaran-

teed for a two point net. The net called (port input (a 1)) of the previous example

illustrates this point. One point lies on the right side and the other on the left. To

connect them, extract-(side]-subnet must generate four new points. Two direc-

tions are possible; either through the 'top' or the 'bottom'. Assume that in this

instance the top is a shorter route and is therefore selected. The new net is now:

(((port input (a 1)) nil 0 100 (ring left nil))
((port input (a 1)) nil 100 200 (ring right nil))
((port input (a 1) nil nil nil (ring left last))
((port input (a 1)) nil nil nil (ring top first))
((port input (a 1)) nil nil nil (ring top last))
((port input (a 1)) nil nil nil (ring right last)))

If the original two points were on a different set of sides than the example

above, a different set of points would be created. The process, however, remains

the same.

Extract-subnets can operate on nets with more than two terminals on one

or more sides. This is possible because extract-[side]-subnet determines the side

of the next point in its original net, and calls on the corresponding extract- [side]-

subnet. The process continues until all points in the net have been examined. This

capability is used in routing the control signal that places tri-state pads in either

the high or low impedance mode. 5,.

The final phase in the extraction process is the allocation of a track to each

net segment. While MacPitts' track allocation algorithm optimizes the channel

width, its inability to consider anything but the current channel results in a less

than optimal overall layout. It lacks the intelligence to assign tracks to nets so

48



that cuts and poly bridges are not required at the channel corners and between

pad-terminals and their tracks.

3. NeLayo~xut

The output from the net extraction process is called nets. It is used by

layout-nets, layout- [side] -net and layout- [side] -point to perform the detailed

routing. The pad router uses two layers, metall and polysilicon to route the nets.

Metall is the preferred layer due to its superior performance characteristics. Polysil-

icon is always used along with two poly-metal cuts to cross-over metal interferences

from either power/ground metall lines or other nets. Henceforth, this structure will

be referred to as a poly-bridge.

Layout-nets is inefficient code. It will insert poly-bridges at the pad ter-

minals and at the corners between routing areas even when this costly structure is

not required. This is illustrated in Figure 24. Notice how a poly-bridge is used in

connecting segments at the top-right corner when continuous routing in metall is

possible. In other words, the algorithm always routes for the worst case.

Layout-nets routes one net at a time. To assemble a layout it considers

three variables: the side of the current segment, its endpoints and the location of

the power and ground pads.

The side where the current point is located is found by use of the macros

is-point-[side]?. A 'true' condition is returned for the macro whose [side] matches

the side attribute of the point being investigated. Consequently, layout-[side]-

nets, where [side] is the same as the side in the point attribute list, is called with

the net, to which the point belongs, as an argument.

In addition to net, the parameters top, right, skip and power are also used by

layout-[side]-net. Top and right are the width and length dimensions of the circuit

body. They correspond to extended-top and extended-right in Figure 25. Skip is the

x-coordinate of either the power or ground terminal, whichever is on the same side

49

.. .. . . ...... I



as the net point in question. If neither power nor ground is on the point's side, then

skip is given nil as a value. Finally, power is the width of the metal wire connecting

ground or power to the power/ground skeleton. Skip Pnd power are used to position

poly-bridges and allow nets to cross-over power/ground wires.

In laying out a net segment, layout-[side]-net considers all the points of a

net lying on that [side]. The function calculates the coordinates necessary to extend

the layer from one point to the other. The actual instrument used to lay out the

wire is the L5 function rect. As the name suggests, rect defines the boundaries

of a rectangle in a specified layer. Its arguments are: layer, z-min, y-min, x-maz

and y-maz. Information gleaned from the attributes ('first', 'last' or 'nil'), the track

number assigned to each side of a net by allocate-tracks, and the design rule

specifications are used to determine the value of the arguments used by rect.

Layout- [side]-net determines the segment endpoints from position attributes

of the net points on that side. It uses the macros is-point-first? and is-point-

last? to ascertain if either 'first' or 'last' occur in the point attribute list. If the

attribute is 'first', while operating on either the bottom or top sides, then a value of

2 is assigned to z-min. If operating on either the left or right side, then y-max takes

the value top. If the attribute were 'last' then z-maz is given (right - 2) for a value

when operating on either the top or bottom sides, or y-min = 0 when on the left

or right sides. If neither 'first' nor 'last' is in the attribute list, then the point must

be either a pad or an internal terminal. The correct endpoint is obtained by using

either the macro point-x when routing on the top or bottom sides, or point-y

when routing on the left or right sides.

The method described in the previous paragraph finds the segment endpoints

along the routing channel. How are coordinates specifying the segment's location

across the channel obtained? The location of the routing channels on the chip is

known. The lower-left corner of the circuit body lies on the point given by the

50



Pad IPADS

DATA ROUTING (extended- right, extended- top)

W %,extened-tp 
-

-to) ATPATH-

A-

N Tlr
O A:1  errsu~ ALJP

A s
o U;
S T CLOCK BUSSES M

N CONTROL ROUTING . N
G 'I

LOGICG
1 -- '4

AR-RAY
A ~

(0'0)- POWER FRAME_,

DATA RO~LMNG (extended-right, 0)

PADSM

Figure 25: MacPitts floor plan.

31



Cartesian coordinates (0, 0). The top-right corner, on the other hand lies on the

point (right, top). These two points define a rectangular reference frame which is

simultaneously the exterior boundary to the circuit body and the inner boundary

to the routing areas. The tracks are evenly spaced concentric circles, starting with

track number 1 near the inner boundary. The space between tracks and the width of

each wire is obtained from the design rules. With this information, layout-[side]-

net is able to obtain the missing y-axis value when routing on either top or bottom

sides, or x-axis values when routing on either right or left sides.

So far, the pad routing area has been visualized as four disjoint rectangles

surrounding a circuit body. Actually, the routing area is a rectangular ring consist-

ing of four disjoint rectangular areas and four small, square areas connecting them

at the comers. The interconnection of net segments at the ring corners is done by

layout- (side]-point.

Layout-(side]-net calls on layout-(side]-point, where in both cases [side]

is the same as the side of the net segment being operated on. Layout-[side]-point

considers three questions to determine the correct layout: which corner? from which

track? and to which track? The answer to the first question hinges on whether the

point has an attribute of 'first' or 'last'. For example, if currently in layout-top-

net with 'first' as an attribute, then layout-top-point is called with "left" as a

parameter; meaning, connect top and left segments. Likewise, the attribute 'last'

calls on layout-top-point with the parameter "right", indicating a connection at

the top-right corner. The current point track number is obtained with the macro

net-track-number. The track number of the point it connects to is obtained with

the macros last-point-track-number or first-point-track-number. With this

information, layout-[side]-point is able to connect two net segments as shown

in Figure 26. Notice that regardless of the need for a poly-bridge, one is always

created.

52



53



D. SUMMARY

MacPitts' routing methodologies are very inefficient. The choice of a one-layer

river router to interconnect data-path and controllers is unfortunate because it

forces a terminal ordering in the controller that usually results in non-optimal con-

troller designs. Polysilicon is not an adequate layer to employ in the river router

because of the long distances involved. Significant transmission delays result even

when wiring small circuits (less than 500 transistors).

The pad routing algorithm is also deficient. Pads are evenly divided and placed

on the top, right and bottom sides. Pads are never located on the left side. If any

one side cannot accomodate its pad quota, it is extended until it can. No attempt

is made to determine if the other two sides can accomodate the "overflow". The

final placement is determined by an integer assigned to the pad by the designer in

the source file. Pad 1 is located on the top-left, pad 2 is located immediately to the

right of pad 1, etc. The last pad is located on the bottom-left (see Figure 24). No

effort is made to place a pad near its internal connection terminal.

Finally, it is possible to route the pad routing channels with one layer. However,

since MacPitts does not coordinate track allocation between the four ring channels,

polysilicon and poly-metal cuts are always used to connect net segments at each

corner.

54



IV. ROUTING IN THE MONTEREY SILICON COMPILER

The inefficient circuit designs produced by MacPitts is exemplified by the 251

transistor layout in Figure 27. This chip has dimensions of 1.78 mm and 1.74

mm for a total area of 3.10 mm2. A circuit performing the same functions can be

handcrafted into a much smaller design. Inefficiency can also be measured by per-

formance. Large circuits tend to be slower because of increased routing distances.

There are various reasons why MacPitts' designs exhibit poor size and performance

characteristics. This investigation has focused on the pad placement and routing

algorithms. A detailed description of MacPitts methodology in this area was pre-

sented in Chapter III. From Figure 27 the following problems can be observed:

1. All signals from the pads must enter the circuit body through the left side.
As a consequence, long wires and wide routing channels are generated.

2. No effort is made to minimize wire length by placing pads near their internal
connection points.

3. Even when sufficient space exists around the periphery to accommodate all
pads, circuit dimensions may be increased if a side cannot accommodate its
pad "quota". The circuit in Figure 27 was extended in both the vertical and
horizontal directions. This resulted in the large empty areas to the right and
above the internal circuit body.

4. Unnecessary use of polysilicon and vias resulting from an inadequate track
allocation algorithm and the poor placement of the ground and power pads.
The high resistivity of polysilicon and the high capacitance of vias degrade
circuit performance.

This chapter introduces a pad routing strategy tailored to the MacPitts circuit

architecture. The algorithms are written in Franz Lisp and are included in Appendix

B. As in previous chapters, the LISP functions used in the algorithms will be denoted

by boldface fonts. Their arguments are denoted by italics.

55

r%



Figure 27: Typical MacPitts circuit

56

r r% .i V %~ ' .
5

.. p



A. DATA-PATH

One of the more conspicuous and peculiar characteristics of circuits designed

by MacPitts is that all signals from the pads must connect to the internal circuit

through the left side. This behavior has a drastic adverse effect on circuit perfor-

mance. Depending on the specific circuit geometry, circuit speeds may be halved.

The worst possible scenario is depicted in Figure 27, where an output pad on the

right side and very close to its internal connection point, must be routed clear across

the chip to enter the circuit. From here it is routed, in polysilicon, across the entire

data-path. A second ill effect is that channels become progressively more congested

and wider than is necessary. The mechanism that results in such routing nightmares

was discussed in Chapter III.

The solution to this problem is simple and direct. As discussed in Chapter III,

all nets must enter through the left side because the macro make-left-tip is used

to attach the attribute 'left' to all data-path terminals that need to connect to the

pads. Changing the macro to make-right-tip makes all such nets connect to the

right side. Unfortunately the same relation does not apply with regards to the top

and bottom sides, since the bus infrastructure available for routing signals in the

horizontal direction, does not exist in the vertical direction. Consequently, it was

decided to limit the accesibility of data-path to the right and left sides only.

The ideal solution to the problem is to divide the data-path in half. Anything to

the left of center should route to the left side. Conversely, anything to the right of

center, should route to the right side. Since the exact length of the data-path is not

known during the bus construction phase, this mechanism is not feasible. A useful

indicator of distance that is available, however, is the number of units required by

data-path. Since units are laid sequentially across the length of data-path, they

provide a rough measure of data-path length.

S
57

-~~~ ~~ ~~~~~~ -- -- %* ** a.%.\ .- r .Y ,



The Monterey Silicon Compiler uses the unit number to determine if terminals

within a unit that connect to pads should route either left or right. If the number of

the unit being processed is less than half the number of total units, its terminals will

route to the left, otherwise they route to the right. This capability was implemented

by means of a two case conditional within get-basic-buses-from-port-output-

unit. The function is included in Appendix B. Redesign of the circuit in Figure 27

with the changes discussed in this section results in the circuit shown in Figure 28.

Notice that pads can now enter the data- path through either the left or right sides.

Much area is wasted in both circuits. The mechanism which determines the final

chip size depends on pad placement and not on the changes introduced by the new

version of get-basic-buses-from-port-output-unit.

B. PAD ROUTING

There are three parts to the new pad routing process: pad-placement, net ex-

traction and net layout. The procedures exploit changes in the data-path routines

that allow signals to enter through either the left or right sides. These changes are

discussed in Chapter IV.A. Pads may be placed on two, three or all four sides. The

number of sides ultimately used is determined by a chip area optimizing algorithm.

Every effort is made to accommodate all pads into the space available. If the pads

require more space than is available, the longest side of the chip is extended until

all pads fit. By extending the longest side, the total increase in area is minimized.

Finally, polysilicon and via usage has been drastically reduced by proper placement

of the ground and power pads and by an efficient track allocation algorithm.

The pad routing functions are in the file frame.l. They are invoked by a call

to layout-pins in layout-object. Layout-pins produces the layout information

that results in the pad ring shown in Figure 29. As in MacPitts, the final version

of pins-layout is obtained by running layout-pins twice. This is necessary because

the pad routing channel width requirements cannot be calculated until some idea of

58

.~. ,-~ w ~ - * ~ E~ ~*" *~ Ir.



MIR

Figure 28: Opening data-path on the left and right sides.

59



the pad positions is available. During the first run through layout-pins, widths of

0 are used. The results from the first run are used by get-ring-width to calculate

exact width requirements for the routing channels. These four values, representing
p

the channels widths of the top, right, bottom and left routing regions, are stored in .

ring-width.

Once pins-layout is produced, the net-extraction processes begins. The algo-

rithm uses net information contained in internal-layout and pins-layout to build

two net-lists. The first list, left-ring-nets includes all nets that enter the internal

circuit through the left side. The second net-list, right-ring-nets corresponds to all

nets that enter the circuit through the right side.

The final phase performs the actual routing process. It too is divided into left

and right sides. The left side uses left-ring-nets as an argument, while the right side

uses right-ring-nets. Each side is further divided into taree problems: routing from

pads on the bottom, routing from pads on the side, and routing from pads on top.

The routing process is initiated by a call to moat.

1. Pad Placement *-

The new pad placement strategy differs from the original MacPitts' methods

in two significant ways. First, it finds the order of net terminals in top-part and wing-

span and builds a pad terminal list in the same order. Not only does this result in a

reduction of the average distance between net terminals, it also simplifies the final

routing. As discussed in Chapter 3, MacPitts builds the pad lists directly from the

source file. It has no built-in optimization capability. Second, pads may be placed

on two, three or four sides. The criterion for this decision is chip area reduction.

In contrast, desigr.s by MacPitts always use three sides for pad placement.

The pad placement process is initiated by a call to arrange-pins from

layout-pins. Arrange-pins is responsible for selecting the sides that pads are

to be placed in. It does this by means of a three case conditional. The first option

60

or



Figure 29: MacPitts' pad ring.

61



considers if all pins can fit along the top and bottom sides. If not, the possibility 0

of using top, bottom and either the right or left side is tested. If this strategy is

inadequate, all four sides are used.

Notice that, regardless of the placement approach, the top and bottom sides

will always contain pads. There are two reasons why these two sides are "common

denominators" in the pad placement schemes. First, as Figure 30 illustrates, the

skeleton ground rail is only exposed to pads along the top boundary. This config-

uration provides strong justification for placing the ground pad on the top. Since

it is advisable to maintain ground and power pads distant from each other to avoid

latch up problems, the power pad is best placed in the bottom. Once a side is

extended to provide space for one pad, placing more pads on that same side results

in no additional area requirements.

A second reason for having the top and bottom sides as common denominators

is that the top and bottom sides are usually longer than the right and bottom sides.

Circuit growth in the horizontal direction is a function of processing complexity.

Vertical growth, on the other hand, is a function of word length.

Arrange-pins yields a list named pin-net of the following form:

(4 ((((1 (signal input (reset))) (2 (on)) (3 (phia)) (4 (phib))) left)

(((1 (phic)) (2 (ground))) top)
(((1 (port input (a 1))) (2 (port output (c 1))) (3 (port input (a 0)))
(4 (port output (c 0)))) right)
(((1 (power))) bottom)))

The first element of the list indicates the number of sides selected for pad

placement and can be 2, 3, or 4. It must be followed by the same number of lists.

Each list contains a list of pads and terminates with the side where the pads in that

list are to be placed. Each pad is assigned a number. The product of this number

and the pad width provides the pad position (x-coordinate when placing pads on

top or bottom, y-coordinate otherwise). In this example, the leading 4 indicates

62

%
b



633



that the enclosed pad list consists of four lists. Each of these lists contains a list of

pads and a side attribute. This attribute can take either top, left, bottom or right

as a value. As their names suggest, attributes indicate the side where that list of

pads is to be placed. Figure 31 illustrates the placement that results from the list

in this example.

Arrange-pins operates on pins, sorted-pins, extended-right and extended-

top. Pins is extracted from the circuit source file. It consists of a pad name and a

pad number. Pad numbers are assigned by the user in the source file. Pins is the

only list that MacPitts uses to construct the pad layout. It provides no information

with which to make intelligent placement decisions. The pins list that corresponds

to the previous example may take the following form:

(((ground) 1) ((phia) 2) ((phib) 3) ((phic) 4) ((on) 5) ((signal input (reset))
6)
((port input (a 0)) 7) ((port output (a 0)) 8) ((port input (a 1)) 9) ((port
output (c 1)) 10) ((power) 11))

The list Sorted-pins provides information that results in more effective pad

placement. The list is created by extract-internal-nets operating on top-part

and wing-layout. Top-part contains the exact position of those terminals in data-

path that connect to pads. Wing-layout contains similar information with respect

to terminals in the -ntroller. Sorted-pins is made up of two lists. The first list

identifies all internal terminals that connect through the left side. This includes

all points in top-part with the attributes 'ring' and 'left', and every point in wing-

layout. The second list contains all top-part points that have attributes 'ring' and

'right'. The attribute 'ring' is used to identify all points that participate in the

pad routing process. The 'left' attribute indicates that the point is located on the

left edge of data-path. The 'right' attribute indicates that the point is located on

the right edge of data-path. These two lists are then sorted from the smallest to

64

*1 - - -)



E, - w

Figure 31: Placing pads on four sides.

65



the greatest y-coordinate. This service is provided by sort-by-y. Arrange-pins

dismantles the list sorted-pins into two lists. The first list is assigned the name left.

The second is given the name right. The sorted-pins list corresponding to the left

side of the example above is:

(((reset) (on))

The list corresponding to the right side is:

((input (a 1)) (output (c 1)) (input (a 0)) (output (c 0))))

As the example shows, sorted-pins and pins are two very different lists. First,

sorted-pins is missing a number of pads. In fact, ground, power, phia, phib and phic

are never present in sorted-pins. These pads are treated differently because, when

routing is concerned, they do not interact with the internal circuit as other pads

do. Ground and power connect to the skeleton, not the circuit body. The clock

signals: phia, phib and phic, are unique in that, for any circuit, they may connect

to either the right, and/or left sides. This provides some latitude in making the

final pad lists. When on the left side, clock pads are always located between the

wing-layout and top-part terminals. On the right side, they are always the bottom

three terminals. Of the three, phia is always on the bottom, phib in the center and

phic on top. Clock pads are appended one at a time to the shorter of the two lists

in sorted-pins. Since the list lengths are revaluated after each insertion, all three

pads need not always be connected to the same side.

Pins and sorted-pins also differ in the structure of their list elements. A

net referred to as (input (a 0)) in sorted-pins is called (port input (a 0)) in pins.

The difference is that the elements in sorted-pins are net names. The elements in

pins are pin names. Pin names not only identify signals names, they also identify

the type of pad. In the example, the net name is (input (a 0)). The pad type is
S.,.l

port input. Some other pad types include: tri-state, port output and i/o4. This

66



difference drives the requirement for pins in arrange-pins. Once the pin layout

lists are formed in arrange-pins, order-pins is called to transform each partial

pin name into the complete pad name. Order-pins finds each element of the layout

list in pins and imports the missing name parts.

When all pads can fit into the top and bottom sides pad-on-two-sides is

called. This function uses four arguments: left, right, a list consisting of the clock

pads, and the difference in the number of elements between left and right, to build

a pad list that results in the placement of all pads on the top and bottom sides. It

attempts to balance the number of pads in left and right by transferring clock pads

to the shortest of the two. Finally, it appends the power pad to left, and appends

ground to the right. Left is placed along the bottom, and right is placed along the

top. Figure 32 illustrates the pad layout for this configuration.

When three sides are required to accommodate all pads pad-on-three-sides

is called. This function uses left, right and the clock pads to build a pad list that

results in the placement of all pads on the top, bottom, and either the left or right

sides. The clock pads are appended to the shorter list between left and right. When

there are more pads in right than in left, the pads in left are placed along the bottom.

Any remaining pads are placed on top. Pads in right are placed along the top and

right sides. Any remaining pads in right are then placed along the bottom.

Placement of pads on all four sides is directed by pads-on-four-sides. As in

all previous cases, clock pads are affixed to the shorter list between left and right.

power is the first pad in left, and ground is the first pad in right. The algorithm

starts with the left list. It assumes that the best solution is one that ensures that

the left side is completely used. It does this by finding the difference between the

number of pads that fit on the left side and the number of pads in left. If the

difference is one or less, it positions power on the left corner of the bottom side.

and all others on the left side. Otherwise, it divides the difference by two, and places

67

dc.0- 0 -



rT7r

I Ell

Fig-ure 32: A circuit with pads on two sides.

68-



this number of pads on the bottom, fills up the left side, and places the remainder

on top. Pads in right are placed in a similar fashion. If the difference between the

number of pads that fit on the right side and the number of pads in right is one or

less, the ground pad is placed at the right corner of the top side. Otherwise, the

difference is divided by two, and that number of pads, starting with ground, are

placed on top, then the right side is filled, and finally, any excess is placed along

the bottom. Figure 31 illustrates a circuit with pads on all four sides.

In all pad placement schemes, ground is the first pad placed when routing

right. It is always located on top. It serves as a boundary; pads to the left of

ground connect to the left side of the circuit, while those to the right of ground

attach to the right side of the circuit. In a similar fashion, power is the first pad

placed when routing left. It is always on the bottom. It also serves as a boundary.

To its right, all pads attach to the right side. To its left, pads connect to the left

side of the circuit. This characteristic of the ground and power pads is exploited

during net extraction. Placing ground and power pads in this fashion eliminates

all occurrences of nets crossing over the power/ground pad to skeleton connecting

wire. It reduces the number of vias and the amount of polysilicon required.

2. Pad Layout

Once pin-net is formed, pad layout is initiated by place-pins. The list pro-

duced by place-pins is named pins-layout. This list contains the information re-

quired to produce pad layouts such as the one illustrated in Figure 33. Place-pins

peels one list from pin-net at a time and transfers it to place-pinsl. Place-pins1

extracts the side where pads in that list are placed, the pad name and the pad

number and forwards it, one pad at a time to place-pin. Place-pin uses the pad

name, pad number and side information to determine the type of pad, its exact

location, and its orientation.

69

• r ,m " ,ww,'- -, ." .€" , '." ." lm¢ me" " "'. 4" " ..",.• ," ." ." € ... " " .'.,,, -,' "m," "w,.



K-6LV Ir vwW VYL TWV6-r."rVIUMUC~otic - '"

bp

pv

Figure 33: Pins-layout%

70.



Place-pin calls on layout-pad to identify the pad type from among the I

following list:
power ground phia
phib phic output4
output8 input tri-state4
tri-state8 i/o4 i/o8

Once the pad type is determined, layout-pad calls on the appropriate func-

tion that returns a list specifying the actual pad layout. These functions are defined

in the file pads.l. The following call results in the description of the pad in Figure

34:

(layout-pad2Ob-input-pad power (input-pad- name pad)

(input-pad-in-wire pad) side)

The function layout-pad20b-input-pad specifies the type of pad. In this

case an input pad of type pad20b. A second type of pad class is rinout. A call to

this type takes the form layout-rinout-input-pad.

Layout-pad calls on the input-pad-name to label the pad with the name

specified by the parameter pad, and input-pad-in-wire to label the point on the -

pad where the internal circuit must connect to. The parameter power is the width

required by the pad-layout ground and power ring.

To position the pad within pins-layout, place-pin uses provides the pin num-

ber and side to the L5 function move. Move takes three arguments: item, x- 5-
"-

distance and y-distance. To place a pin on the right side, place-pin calls:

(move (rotccw (layout-pad pin power 'right))
right
(*g(pad-class-width) (1- pin-number)))

In this example the pad to be moved is brought in by layout-pad and rotated

counterclockwise by the L5 function rotccw. The pad is moved in the x-direction by

the parameter right. This parameter is obtained by the function pins-dimensions

and is the sum of extended-right, the width of the right ring channel and the span

71

IN ....... .....



Iw

* .1%



across the large power and ground rails that surround the internal layout. The pad

is moved in the y-direction by the product of pad-class-width and pin-number-1.

Pad-class-width has no arguments. It returns the width that corresponds to the

pad type in question. For the pad20b class, this parameter is 128A. It is 100A for

the rinout class.

3. Net Extraction

The purpose of the net extraction process is to build net-lists. A net-list

specifies all terminal locations of a net. In the pad routing process, net extraction

must identify net terminal locations in internal-layout and pins-layout.

The net extraction functions in the Monterey Silicon Compiler exploit design

characteristics, inherent to the Monterey silicon compiler, to simplify the algo-

rithms. First, since the pads are ordered in the order that nets appear inside the

circuit, once the first is found on both lists, the other nets fall out automatically.

Second, pads that connect to the left side of the circuit are always left of the ground

and power pads. Pads that connect to the right side of the circuit are always to the

right of the power and ground pads.

The net extraction process described here performs well when confronted with V

two terminal nets. It is not equipped to handle nets with three or more terminals.

Multi-terminal nets occur when more than one tri-state pad is used in a circuit.

The control signal used to change the impedance state of tri-state pads usually

form a multi-terminal net. The Monterey pad router does not currently have this

capability.

Two net-lists are formed during net extraction. The first, given the name

left-ring-nets, consists of nets that connect to the left side of the circuit. Right-ring-

nets includes all nets that connect to the right side of the circuit. Since they are

formed by almost identical processes, only left-ring-nets is discussed here.

7

73

--- u. .~



Left-ring-nets is a list of two lists. The first list contains the y-coordinates of

all the internal terminal points. This list is obtained by means of the functions sort-

y and get-left-netsl in much the same way that was described in the extraction

process that led to pad placement. Essentially, all those points in internal-layout

with both the 'left' and 'ring' attributes are extracted, then sorted by increasing

order of their y-coordinates.

The second list contains coordinates for terminal points at the pads. The

values in this list are interpreted as follows:

1. If value < 0, then the point is on the bottom side, and abs(value) = x-
coordinate.

2. If value > extended-top, then the point is on the top side, and
value - extended-top = x-coordinate.

3. If 0 < value < extended-top, then the point is on either the left or right side
and value = y-coordinate.

These values are obtained by applying prep-pad-bank to pins-layout. Since

the order of pads in pins-layout is derived from the order of terminals in internal- ,a

layout, the first element in the first list connects to the first element in the second,

the second element in the first list corresponds to the second element of the second

list, and so on. A circuit with extended-top = 100, and pads on the bottom., left

and top that connect to the left side, could have the following left-pad-bank:

((10 20 30 50 70) (-40 20 40 70 130))

Prep-pad-bank serves three functions. First, it finds the x-coordinates for

both the ground and power pads. Second, it divides pins-layout into two lists.

Pads to the left of the power and ground pads are packaged in a list and passed to

left-pad-bank. Pads to the right of the power and ground pads are passed on to

right-pad-bank. Both functions represent each pad into a single number. This

number is sufficient to locate tht pad terminal. The terminal numbers are assigned

as follows:

74

~~~~~~~:~~~~A JaU*.N, .- ~ N ~~%%%~


i~0 i

1. If the pad is placed on the right or left side, netpad, =y-coordinatepad,.

2 If the pad is placed on top, netpad, = extended-top+x-coordinatepad,.

3. If the pad is placed on the bottom, netpad, = 0-x-coordinatepad.

4. Net ayoutJJ

The goal of the net layout process is the interconnection of the net-lists con-

structed during net extraction. Of course, this task must be performed within the

framework of the design rules. The proposed net layout method is customized to

the Monterey Silicon Compiler target architecture. It combines routing strategies

found in the moat and river router. These routers were discussed in Chapter II.B.4

and II.B.5. The Monterey Silicon Compiler pad router is designed to minimize

polysilicon and via utilization in the routing channels. It does not guarantee the

smallest possible channel width. The pad router is a river router with a river bed O

in the shape of a rectangular ring. The routing area is made up of four rectangular

channels and the four square areas at the corners. The rectangular areas are located

between the outer skeleton ground and power rails, and the interior boundary of

the pad ground ring. Figure 35 illustrates the pad routing area.

The differentiation between nets that connect to the left side of the circuit,

and nets that connect to the right side is also observed by the net layout functions. 0

The pad routing process is initiated by a call to moat. Moat has three arguments:

left-ring-nets, right-ring-nets and ring-width. Ring-width is a list of four numbers.-'I-m.

These numbers represent the ring channel widths for the top, right, bottom and left 0

sides. The pad router functions use the macros top-width, right-width, bottom-

width and left-width to access the desired value from ring-width. Moat has only U

one function, to direct the appropriate net-list to route-left-bottom tnd route-

right-bottom. Since route-left-bottom and route-right-bottom perform their

functions in the same way, this discussion will be limited to the left instance only.

75 •

S

top channel

left channel right channel

rar

bottom channel

Figure 35: Pad routing area

76

0

The most complex type of pad routing problem that the Monterey compiler

can be presented is shown in Figure 36.a. The routing area for this instance of left-

ring-nets consists of the left portions of the bottom and top rectangular channels.

the entire left channel, and the corner areas at each end of the left channel. The

important parameters in this routing problem are the net-lists and the edges of

the top and bottom boundaries of the left routing channel occurring at y = 0 and

y =extended-top. The net-list is important because it identifies the terminals that

need to be routed. The edges of the left channel are important because they identify

the ring corners.

During the discussion of routers in Chapter II, it was determined that the

moat router is nothing more than a modified channel router. Since the net-lists are

sorted, i.e., the ith element of the terminals on the left side belongs to the same

net as the ith element of the terminals on the right side, this routing problem can

be solved with river routing techniques. The only issues to resolve are the track

allocation problem and routing around the ring corners. These problems are solved

simultaneously by the layout routines.

Tracks must be allocated not only to minimize the occurrence of vias and

polysilicon but to prevent shorts caused by overlapping different nets. The track

allocation method used is essentially that used by the MacPitt's river router and

discussed in Chapter III.B. A differentiation is made between nets that are routed

up-river (the y-coordinate of the internal terminal is greater than the y-coordinate of

the pad terminal), nets routed down-river (the y-coordinate of the internal terminal

is less than the y-coordinate of the pad terminal), and nets routed across river iv-

coordinate of both terminals are equal). Picturing the routing area as divided into

a number of concentric tracks, for each consecutive net routed up-river the assigned

track is incremented by one. That is, the first net routed up- river is assigned to .

track 1, the second to track 2, and so on. When either a down-river or across river

T7

.5.I

V V V i - *.. .. 1V
4
'a i 11 i a i i*i iV •

7I

U

.. CIRCUIT CIRCUIT

.7

(a) (b)

Figure 36: Sample routiag problem: (a) routing by Monterey silicon compiler, (b)
errors caused by change in routing direction

78

*Q- 0 KM VT M % 7' 17

situation occurs, the track counter is reset to one. The same method is used to

assign tracks to consecutive nets routed down-river. In this instance, however, it

is an up-river or across river net that resets the track counter to one. Every time

an across river situation occurs the track counter is reset. Once a net is assigned a

channel it remains in that channel until it reaches its destination.

Tracks must be allocated to prevent interference when routing subsequent

nets. The algorithm routes the lowest net first, using route-left-bottom. After all

nets with pad terminals on the bottom are routed, what remains of left-ring-nets is

passed to route-left-side. Route-left-bottom recognizes pad terminals from the

bottom side because their net values are less than zero. Finally, if any nets exist

with net coordinates greater than extended-top, they are passed to route-left-top

for routing.

If the track allocation method were used as described above, all consecutive

down-river nets would interfere with each other. This is illustrated in Figure 36.b.

This problem is avoided by reversing the track number order between up-river

and down-river nets. For up-river nets track assignment starts with the innermost

net and grows outward. For down-river nets track assignment originates with the

outermost track and proceeds inward. With this modification, the track allocation

method described in the previous paragraph yields the channel of Figure 36.a.

The track that a net is, to occupy is determined by the parameter track.

When routing nets with pads on the bottom, route-left-bottom increments this

parameter by one for each net it routes. This simplification is possible because

pads on the bottom always route up-river. In a similar fashion, nets routed by

route-left-top always route down-river.

When routing nets with pads on the sides any of the three routing directions

may occur. The direction in which the last net was routed is preserved by means

of flag. This parameter may take one of three values: 'down', 'up', or 'straight'.

79

.'. ,..,-

Route-left-side determines whether to update or reset the track counter by ob-

serving the state of flag, and by the routing direction of the current net being routed.

The possible outcomes are:

* If current net is straight THEN track = I

e If current net is down-river THEN

- If flag = straight or flag = up THEN track = 1

- If flag = down THEN track = track + 1

o If current net is up-river THEN

- If flag = straight or flag = down THEN track = 1

- If flag = up THEN track = track + 1

Routing around the corners is very simple. The algorithms treat corners as

simple extensions of the regular rectangular routing areas. As Figure 37 shows, the

net must penetrate into the corner until it reaches the square's diagonal that best

aligns with a radial extending from the center of the circuit. In the corner shown in

Figure 37, the left bottom corner is simulated by setting the reference point (0, 0)

at the top-right corner of the square. The values for both x-min and y-mrin are

both the negative of the product between the track occupied by the net and the

track width. The track width is the sum of the technology dependent parameters

space and width. The track number is the parameter track. The x-max and y-maz

parameters needed to establish the wire dimensions can be obtained from z-min,

y-i n, width and the net terminal coordinates.

80

.,%

CIRCUIT

(0,0)

space

Figure 37: Routing the corners

81

B. SUMMARY

The pad router developed for the Monterey Silicon Compiler outperforms the

original MacPitts pad router in all respects. It requires less area, reduces wire

lengths and minimizes the usage of polysilicon and vias. These across-the-board

improvements are possible due drastic changes in the pad placement algorithms.

and the new capability to enter the circuit body through either the left or right

sides.

82 ''

S

S~
: . , . '. o.,, ., ., - T . 'r ,. ." , -'- ' ° .,. ' °" %' . . % 'o % . %, " " % % ' .% % . '

-i = l i• I -- |- - • -

A. MONTEREY SILICON COMPILER ENVIRONMENT

The functions discussed in Chapter IV and included in Appendix B were inserted

in the Monterey ISI workstation environment developed by J. Harmon [Ref. 19].

This environment allows MacPitts' circuits to be viewed by MAGIC [Ref. 121.

Changes made by J. Harmon to organelles defined in data-path.1 and organelles.,

permit error free extraction of files for simulation. The errors were caused by design

rule incompatibilities between MacPitts and MAGIC.

To design environment is created by issuing the following commands on an ISI

workstation:

Macpitts loads MacPitts environment

include patches replaces MacPitts' data-path.l, library
and organelles.1 with versions created by
J. Harmon [Ref. 121

include buses adds functions that allow connections to
the right and left side of data-path

include pad-router adds pad placement, net extraction and
pad routing functions

macpitts file-name begins circuit compilation a,

B. RESULTS

The new pad router was tested on four circuits. Both the MacPitts and Mon- •

terey version layouts are illustrated in Figures 38 - 45. Table 1 lists measurements

for a number of significant parameters. This particular set of circuits was selected

because of their wide range of sizes and internal structure. The source code used

83

1- w ... ! ---a -- '--

to compile them is included in Appendix C. The first design, MEMORY, is a 2-bit
latch with over 200 transistors. It was used extensively during the software devel-

opment phase because of its small and simple design. TEST is a 3-bit incrementor

with over 500 transistors. MULTIP4 is a 1200 transistor 4-bit multiplier designed

by D. Carlson [Ref. 3]. Finally, TAXI was presented by Siskind, Southard and

Crouch [Ref. 2] in the original MacPitts paper. It is a 1500 transistor, S-bit taxi

meter.

Both MacPitts and Monterey silicon compiler designs were produced for each

circuit. Testing consisted of ESIM [Ref. 12] and CRYSTAL [Ref. 12] simulations on

both the MacPitts and Monterey versions of each circuit. ESIM is an event driven

switch level simulator. It was used to verify the logical integrity of the Monterey

designs. A successful test was one in which the results obtained from a Monterey

design matched the results of the MacPitts version exactly. CRYSTAL performs

timing analysis by measuring critical path transmission delays.

ESIM results verified that the new pad router maintained the circuit's logi-

cal integrity. Results from Monterey compiler circuits matched those obtained by

MacPitts' circuits exactly with one exception. ESIM had difficulty simulating both 'S

the MacPitts and Monterey versions of TAXI when the circuit was fitted with tri-

state pads. Each version produced different and incorrect results.

Of the many parameters available for performance analysis, wire length, layer

type, chip size, number of vias and critical path speed were selected because of their

direct relation with the issues which this thesis undertook to investigate; reduction

of total chip area and increased chip speeds. Chip size has been widely used as a

measure of technology performance. J. Wyatt [Ref 20] demonstrated the contribu-

tion that long wire lengths make to signal propagation delays. Table 2. obtained

from [Ref. 1] shows that signal delays associated with polysilicon are 100 times the

delays experienced with metall wires of equal length.

.4
84

1 %L. L

TABLE 1: STATISTICS FOR MACPITTS AND MONTEREY CHIP DESIGNS

CIRCUIT PARAMETER MACPITTS MONTEREY Mont...Y x 100
MEMORY

length (mm) 1.78 1.67 94
width (mm) 1.74 1.43 82
area (mm) 2 3.10 2.39 77
no. vias 60 9 15
wire length (yi) 17.4 x 103 4.5 x 10 3 26
polysilicon (pi) 3.6 x 1.1 x 31
metall (p) 13.8 x 103 3.4 x 103 25
critical path (ns) 258 147 57

TEST
length (mm) 2.57 2.04 79
width (mm) 1.83 1.86 102
area (mm) 2 4.70 3.79 81
no. vias 65 10 15
wire length (IA) 28.78 x 103 15.38 X 103 53
polysilicon (p) 9.95 X 103 2.04 x 103 20
metall (u) 18.83 x 103 7.69 x 103 41
critical path (ns) 671 604 90

TAXI
length (mm) 4.07 3.49 86
width (mm) 2.72 2.81 103
area (mm)2 11.07 9.81 89
no. vias 117 15 13
wire length (pi) 76.4 x 103 38.0 x 103 50
polysilicon (y) 25.4 x 103 13.2 x 103 52
metall (y) 51.0 x 103 24.8 x 103 49

"critical path (ns) 1998 1864 93
NIULTIP4

length (mm) 5.19 4.70 91
width (mm) 2.40 2.42 101
area (mm)2 12.46 11.37 91
no. vias 104 16 15
wire length (y) 57.26 x 103 42.13 < 103 74
polysilicon (pu) 20.02 x 103 2.73 x 103 14
metall (yi) 37.24 x 103 39.40 x 103 106
critical path (ns) 3061 2266 74

85
,,e

* * ,.

A.11 U I Tf-,T-L I -. , - wKr-w~

Clp

.1

Figure 39: MEMORY circuit design by Monterey

Figure 40: TEST circuit design by MacPitts

88

rLI]l

Figure 41. TEST circuit design by Monterey

89

.....

Figure 42: MULTIP4 circuit design by MacPitts

Figure 43: MULTIP4 circuit design by Monterey

90

Figure 44: TAXI circuit design byv MacPitts

Figure 45: TAXI circuit design by Monterey

92

h~. N

1. Area

The MacPitts pad router impacts on the final chip area in three ways:

1. Circuit extension in either the horizontal and, or vertical direction if any of the
three allowed pad placement sides cannot fit the number of pads indicated by
number-pins-per-side. This is common in small circuits with limited placing
space. This is the mechanism that produces the large empty areas in MacPitts'
version of MEMORY.

2. Since all nets must be routed through the left side, net congestion produces
wider routing channels. By necessity, the sum of tracks in the top and bottom
channels must equal the number of pads (except for ground and power).

3. Designs reserve space for pads on all four sides yet pads are placed on only
three. This is illustrated in Figure 43 where a distance wide enough to ac-
commodate pads is evident on the left side.

The Monterey pad router solves the problems listed above. As a result, it

will always produce smaller layouts than MacPitts. Specifically, the Monterey pad

router will:

1. Place pads on 2, 3, or 4 sides to minimize area. If the number of pads do not
fit around the circuit, the longest side is extended until they do. By extending
the longest side, the total increase in area is minimized.

2. Ability to enter data-path from both the left and right sides reduces net
congestion on the left side and tends to reduce routing channel widths.

3. The exterior pad power ring is collapsed on sides without pads. This is demon-
strated on the right and left sides of Figure 44.

These mechanisms interact to make all Monterey circuits smaller than their

MacPitts counterparts. Best performance is obtained for small circuits, under the

influence of the first mechanism. For such circuits, area reductions of 20% - 25%

are common. Larger circuits exhibit area reductions in the 10% - 15% range. These

circuits tend to place all their pads on the bottom and top sides. The third area

reduction mechanism is most significant here since both the left and right pad power

rings can be collapsed. .

2. Wire Length

Wire length is a useful indicator to determine router effects on circuit speed.

J. Wyatt [Ref. 201 describes the effect of interconnect on signal delays. The impact 5

93

A."

9 ~ %tV ' .. .w ~A.*,,- w%

TABLE2: GUDELI ETOAIG

MTALE2 GUI0,NE FOIG

STacie 2,7 pg.136

Diffusion 20AJ

94

LaO

0

0.0

O0 C5 1.0 1.5 2.0

TIME, NANOSECONDS

LsIOO MICRONS

0.8-

C15 ,
,1/i

~ - - - e

TIME, NANOSECONDS 3

Figure 47: Bounds for the step response of the circuit in Figure 46. (a) L 0, (b)
L =100pi [Ref. 20: Fig. 11.2.241

95

Lai MILLIMETER
1.0 -

Q5

*1

0.2~7

10 20 30 40
TIME, NANOSECONDS

Lai CENTIMETER
1.0

COWL

.

Vi

-.-.-. vi

0.2-.

0.0
0 500 1000 1500 2000

TIME, NANOSECONDS

Figure 48: Bounds for the step response of the circuit in Figure 46. (a) L =1m

(b) L 1cm [Ref. 20: Fig. 11.2.24]

96

of varying lengths of polysilicon on the circuit of Figure 46 is shown in Figures 47

and 48. Table 2 shows guidelines for ignoring RC wire delays.

In this analysis, total wire length is the sum of all wires required to connect

every net from their pads to their connection points in the data-path. controller or

clocks. Thus, wires deep inside data-path may be considered in this measurement.

This is necessary because even though these wires are not produced by the pad

router, their lengths are definitely influenced by the modified pad placement and

routing package. For example, the wire from pad C.2 in Figure 41 must connect

to a point on the right edge of data-path. In MacPitts, this net is first routed

around the circuit body to the left edge of data-path. From here, a long polysilicon

wire is produced by the bus mechanism in data-path to make the final connection

to the terminal near the right edge of data-path. A similar situation occurs with

net RES.3 in Figure 43. The pad is approximately 0.3mm from its terminal inside

data-path. MacPitts requires over 9mm, half of that in polysilicon, to complete the

connection.

As the values in Table 2 suggest, the layer used in routing is as important.

if not more so, than wire length. To assist with the analysis, total wire lengths in

polysilicon and metall were obtained.

The Monterey compiler outperformed MacPitts in all circuits, ranging from

a 6% improvement in TAXI, to a 43% improvement in MEMORY. Time delay

reductions were most pronounced in those circuits with connection points at the far

right of data-path. In routing these circuits (MEMORY, MULTIP4 and TEST1)

MacPitts produces an extremely long polysilicon wire that spans across the data-

path. In contrast, the Monterey silicon compiler accesses these points with a short

polysilicon wire on the right edge of data-path.

97

'V
% N

3. Vias

V',,s, or polysilicon to metal cuts are undesirable from the standpoint of cir-

c',,,t performance. The high capacitance associated with the metal to poly interface

should be avoided where possible. A discussion of the via reduction issues in the -

Monterey silicon compiler was presented in Chapter IV.

98.

1

.1

%

, 1

98'i,

.i "'V'-& . .f.'.f.J,.~%% -w

VI. CONCLUSIONS

A. SUMMARY

This thesis has introduced a new and improved pad router for use by the Nion-

terey silicon compiler to replace the router provided by the MacPitts silicon com-

piler. The original MacPitts pad router suffered from a very inefficient pad place-

ment and routing algorithms, as well as limitations in the ways signals could be

routed to the data-path. The improved performance of the Monterey compiler is

the result of:

1. The ability to connect to data-path from either the left or right sides. MacPitts
was allows connections to data-path on the left side only.

2. The ability to place pads on 2, 3, or 4 sides. All circuits designed by MacPitts
place pads on three sides.

3. Minimize use of polysilicon and vias in the routing area. MacPitts requires
up to 6 vias per net compared to one via per net in the Monterey compiler.

The new router was tested with various circuits. Comparative analysis with

MacPitts' layouts showed that the Monterey router results in smaller and faster

layouts for all circuits. Area improvement ranged from 5% to 20%. Small circuits

tend to benefit most in area reduction. Large circuits show modest area improve-

ments, primarily due to the collapse of the outer power ring on sides without pads.

All Monterey routed designs performed faster than their MacPitts' counterparts.

The greatest improvement was in circuits requiring connections from pads to the

right side of the data-path. Since MacPitts access to the data-path from the left

side only, it uses a long polysilicon wire to reach from the terminal inside data-path

to the left edge of the circuit. This wire is not required by the Monterey compiler

because it can access the terminal through either the left or right sides.

99

- -4. fVA I:~~f~'. ~ '%%,Y

B. RECOMMENDATIONS

The Monterey silicon compiler provdes fertile ground for continued study and

development. The following recommendations should be considered for future thesis

research:

1. Significant speed improvements are possible in SCMOS technology by routing
the long polysilicon wires produced by data-path and by the river router,
between the data-path and the controller, with metall.

2. The fixed floor plan used by MacPitts wastes area. This can be seen by the
large empty spaces below the data-path, as well as the area to the right of the
controller. A study should be undertaken to examine different cell placement
strategies. A possible alternative is to allow the different cells (data-path.
controller, flags and pads) to float until an optimal configuration is found. A
channel router, in conjunction with a global router could be used to route t he
cells.

3. An alternative pad router should be developed to create designs that fit the
various MOSIS standard chip frames.

100
- I.

APPENDIX A

MACPITTS' FUNCTIONS
This Appendix contains those functions in MacPitts that have a role i1. !1:!,;

placement and routing. The first function, get-basic-buses-from-port-ou t pit -
unit is found in the general.1 file. All other functions are in frame.l.

;;;layout routines

(def get-basic-buses-from-port-output-unit
(lambda (number-of-units tail unit unit-number)
(update-basic-buses
(update-basic-buses
tail
(make-port-output-id (port-output-unit-name unit))
(make-left-tip))))

(make-port-output-id (port-output-unit-name unit))
(make-output-tip unit-number))))

(declare (special gates top-part))

(def layout-object
(lambda (object)
(prog (definitions flags data-path control pins gates straps

conductivity power data-path-length control-length
flags-length top-width bottom-width data-path-layout
control-layout flags-layout river-layout wing-layout
skeleton-layout internal-layout pins-layout ring-layout
layout nets ring-width top-part bottom-part top-bank
bottom-bank river-width bottom-part-river-points
intended-right intended-top extended-right extended-top)

(setq definitions (object-definitions object))
(setq flags (object-flags object))
(setq data-path (object-data-path object))
(setq control (object-control object))
(setq pins (object-pins object))

(herald "Extruding gates")
(setq gates (extrude-gates control flags))
(statistic (concat "Control has " (length gates) " columns'))
(cond ((member? 'opt-c option-list)

(setq gates
(nthelem-list
(order (extrude-basic-straps gates)

gates
(count (length gates))
(function junction-gate-number)
(lambda (basic-strap) basic-strap)
(lambda (gatel gate2)

101

(gate-before? gatel gate2 gates))
(lambda (gatel gate2)

(gate-after? gatel gate2 gates)))
gates))))

(setq gates (insert-nor-ground-lines gates))
(herald "Extruding straps")

(setq straps (extrude-straps gates))
(statistic
(concat "Circuit has

(slash-alpha
(list (flags-transistor-count flags)

(data-path-transistor-count data-path
definitions)

(control-transistor-count gates straps)
(pins-transistor-count pins))
0
(function +)
(lambda (x) (+ (car x) (cadr x))))
transistors"))

(statistic
(concat "Control has

(slash-alpha straps 0 (function max)
(function strap-track-number))

tracks"))
(setq conductivity (plus (data-path-conductivity

data-path definitions)
(control-conductivity gates straps)

(flags-conductivity flags)))
(setq power (conductivity-to-power-bus-width conductivity ii))

(statistic (concat "Power consumption is " k
(conductivity-to-power-consumption
(plus conductivity

(pins-conductivity pins)))
Watts"))

(setq data-path-length
(max (data-path-required-length data-path definitions)

4))
(setq control-length (control-required-length gates))
(setq flags-length (max (flags-required-length flags power)

4))
(setq top-width (max (data-path-required-width

data-path power definitions)
(flags-required-width flags power)))

(setq bottom-width (control-required-width straps))
(herald "Laying out data-path")

(setq data-path-layout
(layout-data-path data-path power top-width
definitions))

(herald "Laying out control")
(setq control-layout

(layout-control gates straps power bottom-width))
(herald "Laying out flags")

(setq flags-layout (layout-flags flags power top-width))
(herald "Laying out river")

102

I

(setq top-part
(merge (move data-path-layout (+ power 3) 0)

(move flags-layout
(+ power 3 data-path-length 3 power 3) 0)))

(setq bottom-part
(move control-layout (+ power 3) (- power 4)))

(setq bottom-part-river-points
(find-attributes bottom-part '(river)))

(setq top-bank
(sort (alpha (lambda (point)

(point-x (find top-part
(point-name point))))

bottom-part-river-points)
(function <)))

(setq bottom-bank
(sort (alpha (function point-x)

bottom-part-river-points)
(function <)))

(setq river-width
((river-span 'NP 2 top-bank bottom-bank)

(wing-span bottom-part)
(- 4 power)))

(setq intended-top
(+ power bottom-width power river-width (driver-width)

power top-width power 3 power))
(setq intended-right
(+ power 3

(max control-length (+ data-path-length 3 power
3 flags-length))

3 power))
(setq river-layout
(river 'NP 2 (wing-span bottom-part) top-bank bottom-bank))

(herald "Laying out wing")
(setq wing-layout

(layout-wing (sort (find-attributes
bottom-part '(wing))

(flambda (pointl point2)
(< (point-x point1)

(point-x point2))))))
(herald "Laying out skeleton")

(setq skeleton-layout
(layout-skeleton power intended-top intended-right

data-path-length bottom-width river-width))
(setq internal-layout
(merge
(move top-part

0 (+ power bottom-width power river-width
(driver-width) power))

bottom-part
(move (rotcw river-layout)

0 (e power bottom-width power river-width))
(move wing-layout 0 (+ power bottom-width 4))

skeleton-layout))
(herald "Laying out pins")

103

(setq pins-layout
(layout-pins
pins
power
intended-right
intended-top
(make-ring-width 0 0 0 0)
(lookup-logo definitions)))

(setq extended-right (extend-right pins intended-right))
(setq extended-top (extend-top pins intended-top))
(setq ring-width

(get-ring-width
(merge internal-layout pins-layout) extended-right

extended-top))
(setq pins-layout

(layout-pins
pins
power
intended-right-
intended-top
ring-width
(lookup-logo definitions)))

(setq layout
(first-quadrant (merge internal-layout pins-layout

ring-layout))) "s
(statistic (concat "Dimensions are to

;;jh replaced minimum-feature-size with lambda-spacing.
(quotient (times (right layout)

(lambda-spacing))
100000.0)

" mm by "
(quotient (times (top layout)

(lambda-spacing))
100000.0)

" mm"))

(return layout))))}

(def wing-span
(lambda (item)
(1+ (* 5 (length (find-attributes item '(wing)))))))

(defsymbol layout-wing (points)
(merge-list
(alpha
(lambda (point wing-number)
(merge
(rect 'NP 0

(- (* 5 wing-number) 3)
(+ (point-x point) 1)
(- (* 5 wing-number) 1))

(rect 'NP (- (point-x point) 1)
0
(+ (point-x point) 1)
(- (* 5 wing-number) 1))

104

V Pol

(mark (car (point-name point))
0
(- (* 5 wing-numbar) 2)
'NP)
(ring left inside))))

points
(count (length points)))))

;;;layout nets

(declare (special nets right top power power-point ground-point)) (def
layout-nets
(lambda (nets right top power power-point ground-point)
(merge-list
(alpha (lambda (net)

(layout-net net nets right top power power-point
ground-point))

nets))))

(declare (unspecial nets right top power
power-point ground-point))

(def layout-net
(lambda (net nets right top power power-point ground-point)
(cond ((is-point-top? (car (net-basic-net net)))

(layout-top-net net nets right top
(cond ((is-point-top? power-point)

(point-x power-point))
((is-point-top? ground-point)
(point-x ground-point))
(t))

power))
((is-point-right? (car (net-basic-net net)))
(layout-right-net net nets right top

(cond ((is-point-right? power-point)
(point-y power-point))
((is-point-right? ground-point)
(point-y ground-point))
(t 0))

power))
((is-point-bottom? (car (net-basic-net net)))

(layout-bottom-net net nets right top
(cond ((is-point-bottom? power-point)

(point-x power-point))
((is-point-bottom?

ground-point)
(point-x ground-point))

(t))
power))

((is-point-left? (car (net-basic-net net)))
(layout-left-net net nets right top

(cond ((is-point-left? power-point)
(point-y power-point))

((is-point-left? ground-point)

105

(point-y ground-point))
(t))

power)))))

(declare (special nets right top track-number))

(def layout-top-net
(lambda (net nets right top skip power)
(let ((basic-net (net-basic-net net))

(track-number (net-track-number net)))
(let ((left-x

(cond ((is-point-first? (basic-net-left-point
basic-net)) 2)

(t (point-x (basic-net-left-point basic-net)))))
(right-x

(cond ((is-point-last? (basic-net-right-point
basic-net))

(- right 2))
(t (point-x (basic-net-right-point

basic-net))))))
(merge
(merge-list
(alpha (lambda (point)

(layout-top-point point nets right
top track-number))

basic-net))
(cond

((or (null skip)
(< right-x (- skip (/up power 2) 3))
(> left-x (+ skip (/up power 2) 3)))

(rect 'NM left-x
(+ top (* 7 track-number) -4)
right-x
(+ top (* 7 track-number))))

(t (merge

(rect 'NM left-x
(+ top (* 7 track-number) -4)
(- skip (/up power 2) 3)
(+ top (* 7 track-number)))

(rect 'NM (+ skip (/up power 2) 3)
(+ top (* 7 track-number) -4)
right-x
(+ top (, 7 track-number)))

(rect 'NP (- skip (/up power 2) 7)
(+ top (* 7 track-number) -4)
(+ skip (/up power 2) 7)
(+ top (* 7 track-number)))

(move (poly-cut) (- skip (/up power 2) 7) b
(. top (* 7 track-number)))

(move (poly-cut) (skip (/up power 2) 3)
(+ top (* 7 track-number))))))))))

(declare (unspecial nets right top track-number)) (b
106

%, ", o
lol 11"% ILY~

(declare (special nets right top track-number))

(def layout-right-net
(lambda (net nets right top skip power)
(let ((basic-net (net-basic-net net))

(track-number (net-track-number net)))
(let ((top-y

(cond ((is-point-first? (basic-net-left-point
basic-net)) top)

(t (point-y (basic-net-left-point basic-net)))))
(bottom-y

(cond ((is-point-last? (basic-net-right-point
basic-net)) 0)

(t (point-y (basic-net-right-point
basic-net))))))

(merge
(merge-list
(alpha (lambda (point)

(layout-right-point point nets right
top track- number))

basic-net))
(cond
((or (null skip)

(< top-y (- skip (/up power 2) 3))
(> bottom-y (+ skip (/up power 2) 3)))

(rect 'NM (+ right (* 7 track-number) -4)
bottom-y
(+ right (* 7 track-number))
top-y))

(t (merge
(rect 'NM (+ right (* 7 track-number) -4)

bottom-y
(+ right (* 7 track-number))
(- skip (/up power 2) 3))

(rect 'NM (+ right (* 7 track-number) -4)
(+ skip (/up power 2) 3)
(+ right (* 7 track-number))
top-y)

(rect 'NP (+ right (* 7 track-number) -4)
(- skip (/up power 2) 7)
(+ right (* 7 track-number))
(+ skip (/up power 2) 7))

(move (poly-cut) (+ right (* 7 track-number))
(- skip (/up power 2) 7))

(move (poly-cut) (+ right (* 7 track-number))
(+ skip (/up power 2) 3))))))))))

(declare (unspecial nets right top track-number)) !

(declare (special nets right top track-number))

(def layout-bottom-net
(lambda (net nets right top skip power)
(let ((basic-net (net-basic-net net))

107

Il

(track-number (net-track-number net)))

(let ((right-x
(cond ((is-point-first? (basic-net-left-point

basic-net))
(- right 2))
(t (point-x (basic-net-left-point basic-net))))~(left-i

(cond ((is-point-last? (basic-net-right-point
basic-net)) 2)

(t (point-x (basic-net-right-point
basic-net))))))

(merge
(merge-list
(alpha (lambda (point)

(layout-bottom-point point nets right
top track-number))

basic-net))
(cond
((or (null skip)

(< right-x (- skip (/up power 2) 3))
(> left-x (+ skip (/up power 2) 3)))

(rect 'NM left-x
(- (* 7 track-number))
right-x
(- 4 (* 7 track-number))))

(t (merge
(rect 'NM left-x

(- (* 7 track-number))

(- skip (/up power 2) 3)
(- 4 (* 7 track-number)))

(rect 'NM (+ skip (/up power 2) 3)
(- (* 7 track-number))
right-x
(- 4 (* 7 track-number)))

(rect 'NP (- skip (/up power 2) 7)
(- (* 7 track-number))
(+ skip (/up power 2) 7)
(- 4 (* 7 track-number)))

(move (poly-cut) (- skip (/up power 2) 7)
(- 4 (* 7 track-number)))

(move (poly-cut) (+ skip (/up power 2) 3)
(- 4 (* 7 track-number))))))))))

(declare (unspecial nets right top track-number))

(declare (special nets right top track-number))

(def layout-left-net
(lambda (net nets right top skip power)
(let ((basic-net (net-basic-net net))

(track-number (net-track-number net)))
(let ((bottom-y

(cond ((is-point-first? (basic-net-left-point
basic-net)) 0)

108

(t (point-y (basic-net-left-point basic-net)))))(top-y
(cond ((is-point-last? (basic-net-right-point

basic-net)) top)
(t (point-y (basic-net-right-point

basic-net))))))
(merge
(merge-list
(alpha (lambda (point)

(layout-left-point point nets right
top track-number))

basic-net))
(cond
((or (null skip)

(< top-y (- skip (/up power 2) 3))
(> bottom-y (+ skip (fup power 2) 3)))

(rect 'NM (- (* 7 track-number))
bottom-y
(- 4 (* 7 track-number))
top-y))

(t (merge
(rect 'NM (- (* 7 track-number))

bottom-y
(- 4 (* 7 track-number))
(- skip (/up power 2) 3))

(rect 'NM (- (* 7 track-number))
(skip (/up power 2) 3)
(- 4 (* 7 track-number))
top-y)

(rect 'NP (- (* 7 track-number))
(- skip (/up power 2) 7)
(- 4 (* 7 track-number))
(+ skip (/up power 2) 7))

(move (poly-cut) (- 4 (* 7 track-number))
(- skip (/up power 2) 7))

(move (poly-cut) (- 4 (* 7 track-number))
(+ skip (/up power 2) 3))))))))))

(declare (unspecial nets right top track-number))

(def layout-top-point
(lambda (point nets right top track-number)
(cond
((is-point-first? point)
(merge
(move (poly-cut) (- (* 7

(last-point-track-number
(point-name point) 'left nets)))

(+ top (* 7 track-number)))
(move (poly-cut) 0

(+ top (* 7 track-number)))
(rect 'NP -(*7

(last-point-track-number (point-name point)
'left nets)))

109

(+ top -4 (* 7 track-number))
0
(+ top (* 7 track-number)))))

((is-point-last? point)
(merge
(move (poly-cut) (+ right -4

(* 7 (first-point-track-nuamber
(point-name point)
'right nets)))

(+ top (* 7 track-number)))
(move (poly-cut) (- right 4)

(+ top (* 7 track-number)))
(rect 'NP right

(+ top -4 (* 7 track-number))
(+ right -4

(* 7 (first-point-track-number
(point-name point) 'right nets)))

(t (merge (+ top (* 7 track-number)))))

(move (poly-cut) (- (point-x point) 2)
(+ top (* 7 track-number)))

(rect 'NP (I- (point-x point))
(min (+ top (* 7 track-number)) (point-y point))

(1+ (point-x point))
(max (+ top (* 7 track-number))

(point-y point))))))))

(def layout-right-point
(lambda (point nets right top track-number)
(cond
((is-point-first? point)
(rect 'NM (+ right (* 7 track-number) -4)

top
(+ right (* 7 track-number))
(+ top (* 7 (last-point-track-number

(point-name point) 'top nets)))))
((is-point-last? point)
(rect 'NM (+ right (* 7 track-number) -4)

(- (* 7 (first-point-track-number
(point-name point) 'bottom nets)))

(+ right (* 7 track-number))
0))

(t (merge
(move (poly-cut) (+ right -4 (* 7 track-number))

(+ (point-y point) 2))
(rect 'NP (rin (+ right -4 (* 7 track-number))

(point-x point))
(1- (point-y point))
(max (+ right -4 (* 7 track-number))

(point-x point))
(1+ (point-y point))))))))

(def layout-bottom-point
(lambda (point nets right top track-number)

110

.. .. i

(cond
((is-point-first? point)
(merge
(move (poly-cut) (+ right -4

(* 7 (last-point-track-number
(point-name point) 'right nets))

(- 4 (* 7 track-number)))
(move (poly-cut) (- right 4)

(- 4 (* 7 track-number)))
(rect 'NP (- right 4)

(- (* 7 track-number))
(+ right (* 7 (last-point-track-number

(point-name point) 'right nets)))
(- 4 (* 7 track-number)))))

((is-point-last? point)
(merge
(move (poly-cut) (- (* 7 (first-point-track-number

(point-name point) 'left nets)))
(- 4 (* 7 track-number)))

(move (poly-cut) 0
(- 4 (* 7 track-number)))

(rect 'NP (- (* 7 (first-point-track-number
(point-name point) 'left nets)))

(- (* 7 track-number))
0
(- 4 (* 7 track-number)))))

(t (merge
(move (poly-cut) (- (point-x point) 2)

(- 4 (* 7 track-number)))
(rect 'NP (I- (point-x point))

(min (point-y point) (- 4 (* 7 track-number)))
(1+ (point-x point))
(max (point-y point)

(- 4 (* 7 track-number)))))))))

(def layout-left-point
(lambda (point nets right top track-number)
(cond
((is-point-first? point)
(rect 'NM (- (* 7 track-number))

(- (* 7 (last-point-track-number (point-name point;
'bottom nets)))

(-4 (* 7 track-number))
0))

((is-point-last? point)
(rect 'NM (- (* 7 track-number))

top
(-4 (* 7 track-number))
(+ top (* 7 (first-point-track-number

(point-name point) 'top nets)))))
(t (merge

(move (poly-cut) (- (* 7 track-number))
(+ (point-y point) 2))

(rect 'NP (min (- (* 7 track-number)) (point-x point))

111

(1- (point-y point))
(max (- (* 7 track-number)) (point-x point))
(1+ (point-y point))))))))

(declare (special net-name side)) b

(def first-point-track-number
(lambda (net-name side nets)
(net-track-number
(first-that
nets
()
(lambda (net)
(and (member? side (point-attributes

(basic-net-left-point (net-basic-net net))'
(is-point-first? (basic-net-left-point (net-basic-net net)),,
(equal (point-name (basic-net-left-point

(net-basic-net net)))
net-name)))))))

(declare (unspecial net-name side))

(declare (special net-name side))

(def last-point-track-number
(lambda (net-name side nets)
(net-track-number
(first-that
nets

(lambda (net)
(and (member? side

(point-attributes
(basic-net-right-point
(net-basic-net net))))

(is-point-last? (basic-net-right-point
(net-basic-net net)))

(equal (point-name (basic-net-right-point
(net-basic-net net)))

net-name)))))))

(declare (unspecial net-name side))

(def get-ring-width
(lambda (item right top)
(make-ring-width
(* 7 (net-track-number S

(minmax (extract-nets item 'top right top)
(lambda (netl net2)

(> (net-track-number neti)
(net-track-number net2)))))

(* 7 (net-track-number
(minmax (extract-nets item 'right right top)

112

VIA-

(lambda (netl net2)
(> (net-track-number neti)

(net-track-number net2))))))
(* 7 (net-track-number

(minmax (extract-nets item 'bottom right top)
(lambda (neti net2)

(> (net-track-number neti)
(net-track-number net2))))))

(* 7 (net-track-number
(minmax (extract-nets item 'left right top)

(lambda (netl net2)
(> (net-track-number netl)

(net-track-number net2)))))))))

(declare (special side))

(def extract-nets
(lambda (item side right top)
(allocate-tracks
(such-that (extract-subnets

(rotate-basic-nets
(order-basic-nets (extract-basic-nets item))
right top))

(lambda (basic-net)
(member? side

(point-attributes
(car basic-net)))))

(function basic-net-left-point)
(function basic-net-right-point)
(function basic-net-point-further-left?)
(function basic-net-overlap?))))

(declare (unspecial side))

(def extract-subnets
(lambda (nets)
(cond
((null nets) 0)
(t (append (extract-subnet (car nets))

(extract-subnets (cdr nets)))))))

(def extract-subnet
(lambda (net)
(let ((net-name (point-name (car net))))
(cond ((null net) 0)

((is-point-top? (car net))
(extract-top-subnet (list (car net)) ()

(cdr net) net-name))
((is-point-right? (car net))
(extract-right-subnet (list (car net)) ()

(cdr net) net-name))
((is-point-bottom? (car net))
(extract-bottom-subnet (list (car net)) ()

(cdr net) net-name))

113

* ~ ~ ~ ~ ~ ~ . V W NN * ~

((is-point-left? (car net))
(extract-left-subnet (list (car net)) ()

(cdr net) net-name))))))

(def extract-top-subnet
(lambda (subnet subnets net net-name)
(cond ((null net) (cons subnet subnets))

((is-point-top? (car net))
(extract-top-subnet
(appendl subnet (car net)) subnets (cdr net) net-name',

((is-point-right? (car net))
(extract-right-subnet
(list (make-point net-name () () ()

(right first ring)))
(append
(list (appendl subnet

(make-point net-name 0 () ()
'(top last ring))))

subnets)
net
net-name))

((is-point-bottom? (car net))
(extract-bottom-subnet
(list (make-point net-name () () ()

'(bottom first ring)))
(append
(list (appendl subnet

(make-point net-name () () ()
'(top last ring)))

(list (make-point net-name () () ()
'(right first ring))

(make-point net-name () () ()
'(right last ring))))

subnets)
net
net-name))

((is-point-left? (car net))
(extract-left-subnet
(list (make-point net-name () () ()

'(left first ring)))
(append

(list (appendl subnet
(make-point net-name () () ()

'(top last ring)))
(list (make-point net-name () () ()

'(right first ring))
(make-point net-name () () ()

'(right last ring)))
(list (make-point net-name () () ()

'(bottom first ring))
(make-point net-name () () ()

'(bottom last ring))))
subnets)

net

114

1I

net-name)))))

(def extract-right-subnet
(lambda (subnet subnets net net-name)
(cond ((null net) (cons subnet subnets))

((is-point-top? (car net))
(extract-top-subnet
(list (make-point net-name 0 () () '(top first ring)))

(append
(list (appendi subnet

(make-point net-name () () ()
'(right last ring)))

(list (make-point net-name () () 0
'(bottom first ring))

(make-point net-name () () ()
'(bottom last ring)))

(list (make-point net-name 0 () ()
'(left first ring)) S

(make-point net-name () 0 ()
'(left last ring))))

subnets)
net
net-name))

((is-point-right? (car net))
(extract-right-subnet
(appendl subnet (car net)) subnets (cdr net) net-name))

((is-point-bottom? (car net))
(extract-bottom-subnet
(list (make-point net-name 0 () ()

'(bottom first ring)))
(append
(list
(append1 subnet (make-point net-name () () ()

'(right last ring))))
subnets)

net p
net-name))

((is-point-left? (car net))
(extract-left-subnet
(list (make-point net-name () () ()

'(left first ring)))
(append
(list (append1 subnet

(make-point net-name () () ()
'(right last ring)))

(list (make-point net-name () () ()
'(bottom first ring))

(make-point net-name () () ()
'(bottom last ring))))

subnets)
net
net-name)))))

(def extract-bottom-subnet

115

(lambda (subnet subnets net net-name)
(cond ((null net) (cons subnet subnets))

((is-point-top? (car net))
(extract-top-subnet
(list (make-point net-name ()) () '(top first ring)")

(append
(list
(appendl subnet (make-point net-name) () ()

'(bottom last ring)))
(list (make-point net-name () () ()

'(left first ring))
(make-point net-name () ())

'(left last ring))))
subnets)

net
net-name))

((is-point-right? (car net))
(extract-right-subnet
(list (make-point net-name () () ()

'(right first ring)))
(append
(list
(appendl subnet (make-point net-name () () ()

'(bottom last ring)))
(list (make-point net-name ()) ()

'(left first ring))
(make-point net-name 0() ()

'(left last ring)))
(list (make-point net-name () () ()

'(top first ring))
(make-point net-name) () ()

'(top last ring))))
subnets)

net
net-name))

((is-point-bottom? (car net))
(extract-bottom-subnet
(appendl subnet (car net)) subnets (cdr net) net-name))

((is-point-left? (car net))
(extract-left-subnet
(list (make-point net-name () () ()

'(left first ring)))
(append
(list
(appendl subnet

(make-point net-name () () ()
'(bottom last ring))))

subnets)
net
net-name)))))

(def extract-left-subnet
(lambda (subnet subnets net net-name)
(cond ((null net) (cons subnet subnets)) S

116

%

((is-point-top? (car net))
(extract-top-subnet
(list (make-point net-name () 0 0 '(top first ring)))

(append
(list (append1 subnet

(make-point net-name () () 0
'(left last ring))))

subnets)

net
net-name))

((is-point-right? (car net))
(extract -right-subnet
(list (make-point net-name () () ()

'(right first ring)))
(append
(list (appendi subnet

(make-point net-name () () ()
'(left last ring)))

(list (make-point net-name () () ()
'(top first ring))

(make-point net-name () () ()
'(top last ring))))

subnet s)
net
net-name))

((is-point-bottom? (car net))
(extract-bottom-subnet
(list (make-point net-name () ()

'(bottom first ring)))
(append
(list (appendi subnet lk

(make-point net-name 0 () 0
'(left last ring)))

(list (make-point net-name 0 () ()
'(top first ring))

(make-point net-name () () ()
'(top last ring)))

(list (make-point net-name () 0 0
'(right first ring))

(make-point net-name () () ()
'(right last ring))))

subnets)
net
net-name))

((is-point-left? (car net))
(extract-left-subnet
(appendi subnet (car net))
subnets (cdr net) net-name)))))

(declare (special item))

(def extract-basic-nets
(lambda (item)
(alpha (lambda (name)

117

(such-that (find-all item name)
(lambda (point)
(member? 'ring (point-attributes point)))))

(setify (alpha (function point-name)
(find-attributes item '(ring)))))))

(declare (unspecial item))

(def order-basic-nets
(lambda (basic-nets)
(alpha (lambda (basic-net)

(sort basic-net
(function basic-net-point-further-left?)))

basic-nets)))

(declare (special right top))

(def rotate-basic-nets
(lambda (basic-nets right top)
(alpha (lambda (basic-net)

(rotate basic-net
(rotation-amount basic-net right top)))

basic-nets)))

(declare (unspecial right top))

(def rotation-amount
(lambda (basic-net right top)
(cond ((or (null basic-net) (= (length basic-net) I)) 0)

(t (rotation-count
(rotation-amount1 basic-net

(car (last basic-net)) right top))))))

(def rotation-amountl
(lambda (basic-net last right top)
(let ((head (make-rotation

0
(basic-net-distance last

(car basic-net)
right top))))

(cond
((= (length basic-net) 1) head)
(t (let ((tail (rotation-amount1 (cdr basic-net)

(car basic-net) right top)))
(cond ((> (rotation-distance tail)

(rotation-distance head))
(make-rotation (1+ (rotation-count tail))

(rotation-distance tail)))
(t head)))))))

(def basic-net-left-point
(lambda (basic-net)
(car basic-net)))

118

*j- . .j 1r V AM

(def basic-net-right-point
(lambda (basic-net)
(car (last basic-net))))

(def basic-net-point-further-left?
(lambda (pointl point2)
(cond ((is-point-first? pointi) (not (is-point-first? point2)))
((is-point-last? pointi) ())

((is-point-first? point2) 0)
((is-point-last? point2) t)
((is-point-top? point1)
(< (point-x pointl) (point-x point2)))

((is-point-right? pointi)
(> (point-y point1) (point-y point2)))

((is-point-bottom? pointl)
(> (point-x pointl) (point-x point2)))

((is-point-left? point1)
(< (point-y pointl) (point-y point2))))))

(d~f basic-net-overlap?
(lambda (basic-net left-point)
(let ((right-point (basic-net-right-point basic-net)))
(cond ((is-point-first? right-point)

(is-point-first? left-point))
((is-point-last? right-point) t)
((is-point-first? left-point) t)
((is-point-last? left-point) 0)
((is-point-top? right-point)
(> (point-x right-point) (- (point-x left-point) 7)))

((is-point-right? right-point)
(< (point-y right-point) (+ (point-y left-point) 7)))

((is-point-bottom? right-point)
(< (point-x right-point) (+ (point-x left-point) 7)))

((is-point-left? right-point)
(> (point-y right-point)

(- (point-y left-point) 7)))))))

(def basic-net-distance
(lambda (pointl point2 right top)
(let ((xi (point-x pointi))

(yl (point-y pointl))
(x2 (point-x point2))
(y2 (point-y point2)))

(cond
((is-point-top? pointi)
(cond
((is-point-top? point2)
(cond
((< xl x2) (- x2 x1))
(t (- (+ right right top top) (- xi x2)))))

((is-point-right? point2) (+ (- right xI) (- top y2)))
((is-point-bottom? point2)
(+ (- right xl) top (- right x2)))

119

((is-point-left? point2) (+ (- right xl) top right y2))))

((is-point-right? pointi)
(cond ((is-point-top? point2) (+ yl right top x2))

((is-point-right? point2)
(cond
((> yl y2) (- yl y2))
(t (- (+ right right top top) (- y2 yl)))))

((is-point-bottom? point2) (+ yl (- right x2)))
((is-point-left? point2) (+ yl right y2))))
((is-point-bottom? pointi)
(cond
((is-point-top? point2) (+ xl top x2))
((is-point-right? point2) (+ xl top right (- top y2)))
((is-point-bottom? point2)
(cond
((> xl x2) (- xl x2))
(t (- (+ right right top top) (- x2 xl)))))
((is-point-left? point2) (+ xl yl))))
((is-point-left? pointl)
(cond
((is-point-top? point2) (+ (- top yl) x2))
((is-point-right? point2)
(+ (- top yl) right (- top y2)))

((is-point-bottom? point2)
(+ (- top yl) right top (- right x2)))

((is-point-left? point2)
(cond
((< yl y2) (- y2 yl))
(t (- (+ right right top top) (- y2 yl))))))))))

(def point-side
(lambda (point)
(cond ((is-point-top? point) 'top)

((is-point-right? point) 'right)
((is-point-bottom? point) 'bottom)
((is-point-left? point) 'left))))

(def point-value
(lambda (point)
(cond ((is-point-top? point) (point-x point))

((is-point-right? point) (point-y point))
((is-point-bottom? point) (point-x point))
((is-point-left? point) (point-y point)))))

(def is-point-inside?
(lambda (point)
(member? 'inside (point-attributes point))))

(def is-point-outside?
(lambda (point)
(member? 'outside (point-attributes point))))

(def is-point-top?
(lambda (point)1w

120

(member? 'top (point-attributes point))))

(def is-point-bottom?
(lambda (point)
(member? 'bottom (point-attributes point))))

(def is-point-left?
(lambda (point)
(member? 'left (point-attributes point))))

(def is-point-right?
(lambda (point)
(member? 'right (point-attributes point))))

(def is-point-first?
(lambda (point)
(member? 'first (point-attributes point))))

(def is-point-last?
(lambda (point)
(member? 'last (point-attributes point))))

;;;layout pins

(def pins-conductivity
(lambda (pins)
(slash-alpha
pins
0.0
(function plus)
(lambda (pin) (pad-conductivity (pin-pad pin))))))

(defsymbol layout-pins
(pins power intended-right intended-top ring-width logo)
(let ((pins-power

(conductivity-to-power-bus-width S
(pins-conductivity pins)
(pad-class-default-power-bus-width))))

(let ((dimensions
(pins-dimensions'pins pins-power ring-width

intended-right intended-top)))
(let ((top (dimensions-top dimensions))

(right (dimensions-right dimensions))
(bottom (dimensions-bottom dimensions))
(left (dimensions-left dimensions)))

(let ((pins-layout (place-pins pins dimensions pins-power)))
(let ((power-point (find pins-layout '(power))) ',

(ground-point (find pins-layout '(ground))))
(merge (cond ((member? 'logo option-list)

(move (first-quadrant
(title logo 'NM 'nonie.r.10))

(+ left pins-power 3)
(+ bottom pins-power 3)))

(t (null-item)))

121

Jill LS

pins-layout
(layout-power-ring pins-power power dimensions

intended-right intended-top
power-point ground-point)

(layout-ground-ring pins-power power dimensions
intended-right intended-top
power-point ground-point)))))))

(def layout-power-ring
(lambda (pins-power power dimensions intended-right intended-top

power-point ground-point)
(let ((top (dimensions-top dimensions))

(right (dimensions-right dimensions))
(bottom (dimensions-bottom dimensions))
(left (dimensions-left dimensions)))

(merge (rect 'NM left
(- top pins-power)
right
top)

(rect 'NM (- right pins-power)
bottom
right
top)

(rect 'NM left
bottom
right
(+ bottom pins-power))

(rect 'NM left
bottom
(+ left pins-power)
top)

(cond ((is-point-top? power-point)
(warning "Power pin can not be on top

side of circuit")
(rect 'NM (- (point-x power-point)

(/up power 2))
intended-top
(+ (point-x power-point)

(/up power 2))
(point-y power-point)))

((is-point-right? power-point)
(rect 'NM intended-right

(- (point-y power-point)
(/up power 2))

(point-x power-point)
(+ (point-y power-point)

(lup power 2))))
((is-point-bottom? power-point)
(rect 'NM (- (point-x power-point)

(/up power 2))
(point-y power-point)
(+ (point-x power-point)

(/up power 2))
0)) S

122

7

((is-point-left? power-point)
(rect 'NM (point-x power-point)

(- (point-y power-point)
(/up power 2))

((point-y power-point)

(/up power 2)))))))))

(def layout-ground-ring
(lambda (pins-power power dimensions intended-right intended-top

power-point ground-point)
(let ((offset (+ pins-power (pad-class-basic-height))))
(let ((top (- (dimensions-top dimensions) offset))

(right (- (dimensions-right dimensions) offset))
(bottom (+ (dimensions-bottom dimensions) offset))
(left (+ (dimensions-left dimensions) offset)))

(merge(cond ((is-point-top? ground-point)

(rect 'NM (- (point-x ground-point) (/up power 2))
intended-top

(+ (point-x ground-point) (/up power 2))
(point-y ground-point)))

((is-point-right? ground-point)
(warning "Ground pin must be on top side of circuit")

(rect 'NM intended-right
(- (point-y ground-point) (/up power 2))

(point-x ground-point)
(+ (point-y ground-point) (/up power 2))))

((is-point-bottom? ground-point)
(rect 'NM (- (point-x ground-point) (/up power 2))

(point-y ground-point)
(+ (point-x ground-point) (/up power 2))

0))
((is-point-left? ground-point)
(rect 'NM (point-x ground-point)

(- (point-y ground-point) (/up power 2))
0

(+ (point-y ground-point) (/up power 2)))))
(cond ((is-point-top? power-point)

(merge
(rect 'NM left

(- top pins-power)
(- (point-x power-point)

(/up (pad-class-width) 2))
top)

(rect 'NM (+ (point-x power-point)
(/up (pad-class-width) 2))

(- top pins-power)
right
top)

(rect 'NM (- right pins-power) %
bottom
right
top)

P

123

(rect 'NM left
bottom
right
(bottom pins-power))

(rect 'NM left
bottom
(+ left pins-power)
top)))

((is-point-right? power-point)
(merge
(rect 'NM left

(- top pins-power)
right
top)

(rect 'NM (- right pins-power)
(+ (point-y power-point)

(/up (pad-class-width) 2))
right
top)

(rect 'NM (- right pins-power)
bottom
right
(- (point-y power-point)

(/up (pad-class-width) 2)))
(rect 'NM left

bottom
right
(+ bottom pins-power))

(rect 'NM left
bottom
(left pins-power)
top)))

((is-point-bottom? power-point)
(merge
(rect 'NM left

(- top pins-power)
right
top)

(rect 'NM (- right pins-power)
bottom
right
top)

(rect 'NM (+ (point-x power-point)
(/up (pad-class-width) 2))

bottom
right
(bottom pins-power))

(rect 'NM left
bottom
(- (point-x power-point)

(/up (pad-class-width) 2))
(+ bottom pins-power))

(rect 'NM left
bottom

124

SIA nlU a. N ' -

(+ left pins-power)
top)))

((is-point-left? power-point)
(merge
(rect 'NM left

(- top pins-power)
right
top)

(rect 'NM (- right pins-power)
bottom
right
top)

(rect 'NM left
bottom
right
(+ bottom pins-power))

(rect 'NM left
bottom S
(+ left pins-power)
(- (point-y power-point)

(/up (pad-class-width) 2)))
(rect 'NM left

(+ (point-y power-point)
(/up (pad-class-width) 2))

(+ left pins-power)
top)))))))))

(def extend-right
(lambda (pins intended-right)
(let ((maximum-number-pins-horizontally

(U intended-right (pad-class-width)))
(number-pins-per-side

(/up (slash-alpha pins 0 (function max)
(function pin-pin-number))

3)))
(cond
((<= number-pins-per-side maximum-number-pins-horizontally)
intended-right)
(t (* (pad-class-width) number-pins-pe.- iU))))))

(de± extend-top
(lambda (pins intended-top)
(let ((maximum-number-pins-vertically

(U intended-top (pad-class-width)))
(number-pins-per-side
(/up (slash-alpha pins 0 (function max)

(function pin-pin-number))
3))

(cond
((<= number-pins-per-side maximum-number-pins-vertically)
intended-top)
(t (* (pad-class-width) number-pins-per-side))))))

125

-,,j

4 m.-wv. a

I
(def pins-dimensions
(lambda (pins pins-power ring-width intended-right intended-top)

(let ((maximum-number-pins-horizontally
(U intended-right (pad-class-width)))

(maximum-number-pins-vertically
(U intended-top (pad-class-width)))

(number-pins-per-side
(lup (slash-alpha pins 0 (function max)

(function pin-pir-number))
3)))

(cond
((and (< number-pins-per-side

maximum-number-pins-horizontally)
(< number-pins-per-side I

maximum-number-pins-vertically))
(make-dimensions
number-pins-per-side
(+ intended-top (ring-width-top ring-width)

(side-extension 'top pins number-pins-per-side
pins-power))

(+ intended-right (ring-width-right ring-width)
(side-extension 'right pins number-pins-per-side

pins-power))
(- 0 (ring-width-bottom ring-width)

(side-extension 'bottom pins number-pins-per-side
pins-power))

(- 0 (ring-width-left ring-width)
(side-extension 'left pins number-pins-per-side

pins-power))))
((<= number-pins-per-side maximum-number-pins-horizontally)

(make-dimensions
number-pins-per-side
(+ (* (pad-class-width) number-pins-per-side)

(ring-width-top ring-width)
(side-extension 'top pins number-pins-per-side

pins-power))
(+ intended-right (ring-width-right ring-width)

(side-extension 'right pins number-pins-per-side
pins-power))

(- 0 (ring-width-bottom ring-width) %
(side-extension 'bottom pins number-pins-per-side

pins-power))
(- 0 (ring-width-left ring-width)

(side-extension 'left pins number-pins-per-side
pins-power))))

((<= number-pins-per-side maximum-number-pins-vertically)
(make-dimensions

number-pins-per-side
(+ intended-top (ring-width-top ring-width)

(side-extension 'top pins number-pins-per-side
pins-power))

(+ (* (pad-class-width) number-pins-per-side)
(ring-width-right ring-width)
(side-extension 'right pins number-pins-per-side

126

pins-power))
(- 0 (ring-width-bottom ring-width)

(side-extension 'bottom pins number-pins-per-side
pins-power))

(- 0 (ring-width-left ring-width)
(side-extension 'left pins number-pins-per-side

pins-power))))
(t
(make-dimensions
number-pins-per-side
(+ (* (pad-class-width) number-pins-per-side)

(ring-width-top ring-width)
(side-extension 'top pins number-pins-per-side

pins-power))
(+ (* (pad-class-width) number-pins-per-side)

(ring-width-right ring-width)
(side-extension 'right pins number-pins-per-side

pins-power))
(-0

(ring-width-bottom ring-width)
(side-extension 'bottom pins number-pins-per-side

pins-power))
(-0

(ring-width-left ring-width)
(side-extension 'left pins number-pins-per-side

pins-power))))))))

(def pin-height
(lambda (pin power)
(+ power

(pad-class-basic-height)
power
(pad-basic-extension (pin-pad pin)))))

(declare (special side number-pins-per-side power))

(def side-extension
(lambda (side pins number-pins-per-side power)
(slash-alpha
(such-that
pins
(lambda (pin)
(cond
((eq side 'top)
(<= (pin-pin-number pin) number-pins-per-side))

((eq side 'right)
(and (> (pin-pin-number pin) number-pins-per-side)
(< (pin-pin-number pin)

(* 2 number-pins-per-side))))
((eq side 'bottom)
(and (> (pin-pin-number pin)

(* 2 number-pins-per-side))
(= (pin-pin-number pin)

127

(*3 number-pins-per-side))))
((eq side 'left) (> (pin-pin-number pin)

(* 3 number-pins-per-side))))))
(+ power (pad-class-basic-height) power 3)
(function max)
(lambda (pin) (pin-height pin power)))))

(declare (unspecial side number-pins-per-side power))

(def place-pins
(lambda (pins dimensions power)
(cond ((null pins) (null-item))

(t (merge (place-pin (car pins) dimensions power)
(place-pins (cdr pins) dimensions power))))))

(def place-pin
(lambda (pin dimensions power)
(let ((number-pins-per-side

.(dimensions-number-pins-per-side dimensions))
(top (dimensions-top dimensions))
(right (dimensions-right dimensions))
(bottom (dimensions-bottom dimensions))
(left (dimensions-left dimensions))
(pin-number (pin-pin-number pin)))

(cond ((<= pin-number number-pins-per-side)
(move (mirrorx (layout-pad (pin-pad pin) power 'top))
(* (pad-class-width) (1- pin-number))

top))
((< pin-number (* 2 number-pins-per-side))
(move (rotccw (layout-pad (pin-pad pin) power 'right))

right
(* (pad-class-width)

(- (* 2 number-pins-per-side) pin-number))))
((< pin-number (* 3 number-pins-per-side))
(move (layout-pad (pin-pad pin) power 'bottom)

(* (pad-class-width)
(- (* 3 number-pins-per-side) pin-number))

bottom))
((<= pin-number (* 4 number-pins-per-side))
(move (rotccw (mirrorx (layout-pad (pin-pad pin)

power 'left)))
ieft
(* (pad-class-width)

(- pin-number
(* 3 number-pins-per-side) 1))))))))

(def /up
(lambda (x y)
(cond ((equal x (times y (fix (quotient x y))))

(fix (quotient x y)))
(t (1+ (fix (quotient x y)))))))

;;;the following routines must be changed when adding new pad
classes

128

%

(def pad-class
;; 16 Apr 87 J Harmon made pad20b the default pad file for all
;; minimum feature sizes except 250 centimicrons.
(lambda ()
(cond ((= (minimum-feature-size) 250) 'rinout) 0

(t 'pad20b))))

(def pad-class-default-power-bus-width
(lambda ()
(cond ((eq (pad-class) 'rinout) 16)

((eq (pad-class) 'pad2Ob) 8))))

(def pad-class-basic-height
(lambda ()
(cond ((eq (pad-class) 'rinout) 82)

((eq (pad-class) 'pad2Ob) 112))))
S

(def pad-class-width
(lambda ()
(cond ((eq (pad-class) 'rinout) 100)

((eq (pad-class) 'pad2Ob) 128))))

(def pad-conductivity
(lambda (pad)
(cond ((eq (pad-class) 'rinout)

(cond ((is-pad-blank? pad) 0.0)
((is-pad-input? pad) 1.66666)
((is-pad-output4? pad) 0.31250)
((is-pad-output8? pad) 0.31250) S
((is-pad-tri-state4? pad) 0.15625)
((is-pad-tri-state8? pad) 0.15625)
((is-pad-i/o4? pad) 0.14285)
((is-pad-i/o8? pad) 0.14285)
((is-pad-power? pad) 0.0)
((is-pad-ground? pad) 0.0)
((is-pad-phia? pad) 1.66666)
((is-pad-phib? pad) 1.66666)
((is-pad-phic? pad) 1.66666)))

((eq (pad-class) 'pad2Ob)
(cond ((is-pad-blank? pad) 0.0)

((is-pad-input? pad) 1.66666) S
((is-pad-output4? pad) 0.31250)
((is-pad-output8? pad) 0.31250)
(is-pad-tri-state4? pad) 0.15625)

((is-pad-tri-state4? pad) 0.15625)
((is-pad-i-s4 pad) 0.14285)
((is-pad-i/o8? pad) 0.14285)
((is-pad-power? pad) 0.0)
((is-pad-ground? pad) 0.0)
((is-pad-phia? pad) 1.66666)
((is-pad-phib? pad) 1.66666)
((is-pad-phic? pad) 1.66666))))))

129

(def pad-basic-extension
(lambda (pad)
(cond ((eq (pad-class) 'rinout)

(cond ((is-pad-blank? pad) 3)
((is-pad-input? pad) 29)
((is-pad-output4? pad) 42)
((is-pad-output8? pad) 42)
((is-pad-tri-state4? pad) 67)
((is-pad-tri-state8? pad) 67)
((is-pad-i/o4? pad) 96)
((is-pad-i/o8? pad) 96)
((is-pad-power? pad) 3)
((is-pad-ground? pad) 3)
((is-pad-phia? pad) 29)
((is-pad-phib? pad) 29)
((is-pad-phic? pad) 29)))

((eq (pad-class) 'pad2Ob)
(cond ((is-pad-blank? pad) 3)

((is-pad-input? pad) 21)
((is-pad-output4? pad) 42)
((is-pad-outputS? pad) 42)
((is-pad-tri-state4? pad) 67)
((is-pad-tri-stateS? pad) 67)
((is-pad-i/o4? pad) 74)
((is-pad-i/oS? pad) 74)
((is-pad-power? pad) 3)
((is-pad-ground? pad) 3)
((is-pad-phia? pad) 21)
((is-pad-phib? pad) 21)
((is-pad-phic? pad) 21))))))

(def pad-transistor-count
(lambda (pad)
(cond ((eq (pad-class) 'rinout)

(cond ((is-pad-blank? pad) '(0 0))
((is-pad-input? pad) '(4 3))
((is-pad-output4? pad) '(6 4))
((is-pad-outputS? pad) '(6 4))
((is-pad-tri-state4? pad) '(11 5))
((is-pad-tri-state8? pad) '(11 5))
((is-pad-i/o4? pad) '(14 8))
((is-pad-i/oS? pad) '(14 8))
((is-pad-power? pad) '(0 0))
((is-pad-ground? pad) '(0 0))
((is-pad-phia? pad) '(4 3))
((is-pad-phib? pad) '(4 3))
((is-pad-phic? pad) '(4 3))))

((eq (pad-class) 'pad2Ob)
(cond ((is-pad-blank? pad) '(0 0))

((is-pad-input? pad) '(4 3))
((is-pad-output4? pad) '(6 4))
((is-pad-outputS? pad) '(6 4))
((is-pad-tri-state4? pad) '(11 5))
((is-pad-tri-stateS? pad) '(ii 5))

130

%

wvwvUWWVV~vV9VFW"zw rw n.,

((is-pad-i/o4 pad) '(14 8))
((is-pad-i/o8? pad) '(14 8))
((is-pad-power? pad) '(0 0))
((is-pad-ground? pad) '(0 0))
((is-pad-phia? pad) '(4 3))
((is-pad-phib? pad) '(4 3))
((is-pad-phic? pad) '(4 3)))))))

(def layout-pad
(lambda (pad power side)
(cond
((eq (pad-class) 'rinout)
(cond
((is-pad-blank? pad) (null-item))
((is-pad-input? pad)
(layout-rinout-input -pad
power (input-pad-name pad) (input-pad-in-wire pad) side))

((is-pad-output4? pad)
(layout- rinout-output 4-pad
power (output4-pad-name pad) (output4-pad-out-wire pad) side))

((is-pad-output8? pad)
(layout -rinout-output 8-pad
power (output8-pad-name pad) (output8-pad-out-wire pad) side))

((is-pad-tri-state4? pad)
(layout-rinout-tri-state4-pad

power (tri-state4-pad-name pad)
(tri-state4-pad-out-wire pad)
(tri-state4-pad-drive-wire pad) side))

((is-pad-tri-state8? pad)
(layout-rinout-tri-st ate8-pad

power (tri-state8-pad-name pad)
(tri-state8-pad-out-wire pad)
(tri-state8-pad-drive-wire pad) side))

((is-pad-i/o4 pad)
(layout-rinout-i/o4-pad power (i/o4-pad-name pad)

(i/o4-pad-in-wire pad)
(i/o4-pad-out-wire pad)
(i/o4-pad-drive-wire pad) side))

((is-pad-i/o8? pad)
(layout-rinout-i/o8-pad power (io8-pad-name pad)

(io8-pad-in-wire pad)
(io8-pad-out-wire pad)
(i/o8-pad-drive-wire pad) side))

((is-pad-power? pad)
(layout-rinout-power-pad power side))
((is-pad-ground? pad)
(layout-rinout-ground-pad power side))

((is-pad-phia? pad)
(layout-rinout-phia-pad power (make-phia-wire) side))
((is-pad-phib? pad)
(layout-rinout-phib-pad power (make-phib-wire) side))

((is-pad-phic? pad)
(layout-rinout-phic-pad power (make-phic-wire) side))))

((eq (pad-class) 'pad20b)

131

- - . ., *1V V

(cond
((is-pad-blank? pad) (null-item))
((is-pad-input? pad)
(layout-pad2Ob- input -pad
power (input-pad-name pad) (input-pad-in-wire pad) side))

((is-pad-output4? pad)
(layout -pad2Ob-output 4-pad
power (output4-pad-name pad)
(output4-pad-out-wire pad) side))

((is-pad-output8? pad)
(layout-pad2Ob-output 8-pad
power (output8-pad-nane pad) (output8-pad-out-wire pad) side))

((is-pad-tri-state4? pad)
(layout-pad2O-tri-st ate4-pad

power
(tri-state4-pad-iame pad)
(tri-state4-pad-out-wire pad)
(tri-state4-pad-drive-wire pad) side))

((is-pad-tri-state8? pad)
(layout-pad2O-tri-st ate8-pad

power (tri-state8-pad-name pad)
(tri-state8-pad-out-wire pad)
(tri-state8-pad-drive-wire pad) side))

((is-pad-i/o4 pad)
(layout-pad2Ob-i/o4-pad power (i/o4-pad-name pad)

(i/o4-pad-in-wire pad)
(i/o4-pad-out-wire pad)
(i/o4-pad-drive-wire pad) side')

((is-pad-i/o8? pad)
(layout-pad2Ob-i/o8-pad power (i/o8-pad-name pad)

(i/o8-pad-in-wire pad)
(i/o8-pad-out-wiie pad)
(i/o8-pad-drive-wire pad) side))

((is-pad-power? pad)
(layout-pad2Ob-power-pad power side))

((is-pad-ground? pad)
(layout-pad2Ob-ground-pad power side))

((is-pad-phia? pad)
(layout-pad2Ob-phia-pad power (make-phia-wire) side))

((is-pad-phib? pad)
(layout-pad2Ob-phib-pad power (make-phib-wire) side))

((is-pad-phic? pad)
(layout-pad2Ob-phic-pad power (make-phic-wire) side))))

132

*1u'111 -1 11 II, Z 11

APPENDIX B

MONTEREY FUNCTIONS

This Appendix contains all the new functions, as wvell as. altered N\IacPitt- t,111,-

ions that play a role in the new pad router and pad placement process. Cnii,,I -

;ire identified by a leading semicolon and capital letters. They pertain to the ,,,,h

immediately after the comment.

FUNCTION RESPONSIBLE FOR ASSIGNING DATA-PATH TERMINALS
TO CONNECT TO PADS THROUGH EITHER THE LEFT OR RIGHT
SIDES. THE ORIGINAL FUNCTION LACKED THE CONDITIONAL
STATEMENT. ALL POINTS WERE SENT THROUGH THE LEFT SIDE
BY MAKE-LEFT-TIP

(def get-basic-buses-from-port-output-unit
(lambda (number-of-units tail unit unit-number)
(update-basic-buses
(update-basic-buses
tail
(make-port-output-id (port-output-unit-name unit))
(cond
((> unit-number (/ number-of-units 2)) (make-right-tip))
(t (make-left-tip))))

(make-port-output-id (port-output-unit-name unit))
(make-output-tip unit-number))))

TOP LEVEL OF LAYOUT ROUTINES

(declare (special gates top-part))

(def layout-object
(lambda (object)
(prog (definitions flags data-path control pins gates straps

conductivity power data-path-length control-length
flags-length top-width bottom-width data-path-layout
control-layout flags-layout river-layout wing-layout
skeleton-layout internal-layout pins-layout ring-layout
layout nets ring-width top-part bottom-part top-bank
bottom-bank river-width bottom-part-river-points
intended-right intended-top extended-right extended-top)

(setq definitions (object-definitions object))
(setq flags (object-flags object))
(setq data-path (object-data-path object))

133

(setq control (object-control object))
(setq pins (object-pins object))

(herald "Extruding gates")
(setq gates (extrude-gates control flags))
(statistic (concat "Control has " (length gates) " columns"))
(cond ((member? 'opt-c option-list)

(setq gates
(nthelem-list
(nrder (extrude-basic-straps gates)

gates
(count (length gates))
(function junction-gate-number)
(flambda (basic-strap) basic-strap)
(flambda (gatel gate2)

(gate-before? gatel gate2 gates))
(flambda (gatel gate2)

(gate-after? gatel gate2 gates)))
gates))))

(setq gates (insert-nor-ground-lines gates))
(herald "Extruding straps")

(setq straps (extrude-straps gates))
(statistic

(concat "Circuit has
(slash-alpha
(list (flags-transistor-count flags)

(data-path-transistor-count data-path
definitions)

(control-transistor-count gates straps)
(pins-transistor-count pins))

0
(function +)
(flambda (x) (+ (car x) (cadr x))))
transistors"))

(statistic
(concat "Control has

(slash-alpha straps 0 (function max)
(function strap-track-number))

"tracks"))

(setq conductivity (plus (data-path-conductivity data-path
definitions)

(control-conductivity gates straps)
(flags-conductivity flags)))

(setq power (conductivity-to-power-bus-width conductivity I1))
(statistic (concat "Power consumption is

(conductivity-to-power-consumption
(plus conductivity

(pins-conductivity pins)))
"Watts"))

(setq data-path-length
(max (data-path-required-length data-path definitions)

4))
(setq control-length (control-required-length gates))
(setq flags-length (max (flags-required-length flags power)

4))

134

...~ .

(setq top-width (max (data-path-required-width
data-path power definitions)

(flags-required-width flags power)))
(setq bottom-width (control-required-width straps))
(herald "Laying out data-path")

(setq data-path-layout
(layout-data-path data-path power

top-width definitions))
'h-rald "Laying out control")

(setq control-layout (layout-control gates straps
power bottom-width))

(herald "Laying out flags")
(setq flags-layout (layout-flags flags power top-width))

(herald "Laying out river")
(setq top-part
(merge (move data-path-layout (+ power 3) 0)

(move flags-layout (+ power 3 data-path-length
3 power 3) 0)))

(setq bottom-part
(move control-layout (+ power 3) (- power 4)))

(setq bottom-part-river-points
(find-attributes bottom-part '(river)))

(setq top-bank
(sort (alpha (flambda

(point)
(point-x (find top-part

(point-name point))))
bottom-part-river-points)
(function <)))

(setq bottom-bank
(sort (alpha (function point-x)

bottom-part-river-points)
(function <)))

(setq river-width
(+ (river-span 'NP 2 top-bank bottom-bank)

(wing-span bottom-part)
(- 4 power)))

(setq intended-top
(+ power bottom-width power river-width (driver-width)
power top-width power 3 power))

(setq intended-right
(+ power 3 (max control-length

(+ data-path-length 3
power 3 flags-length))

3 power))
(setq river-layout
(river 'NP 2 (wing-span bottom-part) top-bank bottom-bank))

(herald "Laying out wing")
(setq wing-layout

(layout-wing (sort (find-attributes bottom-part '(wing))
(flambda (pointl point2)I(< (point-x pointl)

(point-x point2)))))) '
(herald "Laying out skeleton")

135

UP V w ~

(setq skeleton-layout
(layout-skeleton power intended-top intended-right

data-path-length bottom-width
river-width))

(setq internal-layout
(merge
(move top-part 0

(+ power bottom-width power river-width
(driver-width) power))

bo~tom-part
(move (rotcw river-layout) 0

(+ power bottom-width power
river-width))

(move wing-layout 0
(+ power bottom-width 4))

skeleton-layout))
(herald "Laying out pins")
(setq pins-layout

(layout-pins pins
top-part
bottom-part
power
intended-right
intended-top
(make-ring-width 0 0 0 0)
(lookup-logo definitions)))

IF NOT SUFFICIENT SPACE TO ACCOMMODATE NUMBER OF PADS;
SPECIFIED BY NUMBER-PADS-PER-SIDE, EXTEND HORIZONTAL
DIMENSION UNTIL THEY FIT.

(setq extended-right (extend-right pins intended-right
intended-top))

IF NOT SUFFICIENT SPACE TO ACCOMMODATE NUMBER OF PADS;
SPECIFIED BY NUMBER-PADS-PER-SIDE, EXTEND VERTICAL
DIMENSION UNTIL THEY FIT.

(setq extended-top (extend-top pins intended-top extended-
right))

CALCULATES CHANNEL WIDTHS FOR EACH OF THE FOUR SEGMENTS
OF THE PAD ROUTER ROUTING REGIONS

(setq ring-width
(get-ring-width (merge internal-layout pins-layout)

extended-right extended-top))

SECOND PASS THRU LAYOUT-PINS DIFFERS FROM FIRST IN THAT
;CORRECT RING-WIDTHS ARE AVAILABLE

(setq pins-layout
(layout-pins pins

top-part
bottom-part
power
intended-right
intended-top

136

S!

ring-width
(lookup-logo definitions)))

EXTRACT NET-LISTS FOR NETS THAT CONNECT TO LEFT SIDE
OF CIRCUIT

(setq left-ring-nets
(append (list (sort-y

(get-nets(append

'(0 0 0 0)
(list (mapcar

'car
(extract-basic-nets

internal-layout))))
'(left)) 0))

(list (prep-pad-bank pins-layout 'left))))

EXTRACT NET-LISTS FOR PADS THAT CONNECT TO RIGHT SIDE
OF CIRCUIT

(setq right-ring-nets
(append (list (sort-y

(get-nets
(append
'(0 0 0 0)
(list (mapcar

'car
(extract-basic-nets

internal-layout))))
'(right)) ()))

(list (prep-pad-bank pins-layout 'right))))

PRODUCES LAYOUT OF NETS BETWEEN CIRCUIT AND PADS.
(sotq ring-layout

(moat left-ring-nets
right-ring-nets
'NM
4
ring-width))

(setq layout
(first-quadrant (merge internal-layout pins-layout

ring-layout)))
(statistic (concat "Dimensions are I

;;jh replaced minimum-feature-size with lambda-spacing.
(quotient (times (right layout)

(lambda-spacing))
100000.0)

" mm by "

(quotient (times (top layout)
(lambda -spacing))

100000.0)
I mm"))

(return layout))))

137

d.- j

(declare (unspecial gates top-part))

TOP LEVEL OF PAD LAYOUT ROUTINES
(defsymbol layout-pins (pins top-part bottom-part power

intended-right intended-top
ring-width logo)

(let ((extended-right (extend-right pins intended-right
intended-top)))

(let ((extended-top (extend-top pins intended-top
extended-right)))

CALCULATE WIDTH OF PAD POWER AND GROUND SUPPLY RAILS.
(let ((pins-power (conductivity-to-power-bus-width

(pins-conductivity pins)
(pad-class-default-power-bus-width))))

DEVELOPS LI.T THAT SPECIFY PAD LOCATION.
(let ((pin-net (arrange-pins pins (extract-internal-nets

top-part)
extended-top
extended-right)))

CALCULATES OUTER CHIP COORDINATES FOR ALL FOUR SIDES.
RESULTS IN A FOUR NUMBER LIST.

(let ((dimensions (pins-dimensions (cadr pin-net) pins
pins-power ring-width
extended-right
extended-top)))

(let ((top (dimensions-top dimensions))
(right (dimensions-right dimensions))
(left (dimensions-left dimensions))
(bottom (dimensions-bottom dimensions)))

PRODUCES RING OF PADS.
(let ((pins-layout (place-pins (cadr pin-net) dimensions

pins-power)))
(let ((power-point (find pins-layout '(power)))

(ground-point (find pins-layout '(ground))))
(merge (cond ((member? 'logo option-list)

(move (first-quadrant
(title logo NM 'nonie.r.1O))
(+ left pins-power 3)
(+ bottom pins-power 3)))

(t (null-item)))
pins-layout

PRODUCES POWER SUPPLY RAIL FOR PADS.
(layout-power-ring pins-power power dimensions

extended-right extended-top
power-point ground-point)

PRODUCES GROUND SUPPLY RAIL FOR PADS.
(layout-ground-ring pins-power power dimensions

138

I N II

extended-right extended-top
power-point ground-point

(car pin-net))))))))))))

pIF PADS DO NOT FIT AROUND CURRENT CIRCUIT DIMENSIONS,
AND INTENDED-RIGHT > EXTENDED-TOP, INCREASE EXTEND-TOP
UNTIL ALL PADS FIT.

(def extend-right
(lambda (pins intended-right intended-top)
(cond
((< (length pins) (* 2 (+ (fix (U intended-top

(pad-class-width)))
(fix (U intended-right

(pad-class-width))))))
intended-right)

(t
(cond
((< intended-right intended-top) intended-right)
(t (* (fix (U (1+ (- (length pins)

(* 2 (fix (intended-top
(pad-class-width))))))2)) .

(pad-class-width))))))))

IF PADS DO NOT FIT AROUND CURRENT CIRCUIT DIMENSIONS, AND
INTENDED-TOP > EXTENDED-RIGHT, INCREASE EXTENDED-TOP
UNTIL ALL PADS FIT.

(def extend-top
(lambda (pins intended-top extended-right)
(cond %
((< (length pins) (* 2 (+ (fix (U intended-top

(pad-class-width)))
(fix (extended-right

(pad-class-width))))))
intended-top)
(t
(cond
((<= intended-top extended-right) intended-top)
(t (* (fix U (1+ (- (length pins)

(* 2 (fix (U extended-right
(pad-class-width))))))

2))
(pad-class-width))))))))

EXTRACTION OF DATA FOR PAD PLACEMENT

RESULTS IN A LIST CONSISTING OF TWO LISTS. THE FIRST
LIST INCLUDES ALL NET POINTS THAT ARE ON THE LEFT SIDE OF
THE INTERNAL CIRCUIT AND CONNECT TO PADS. THE SECOND
LIST CONTAINS ALL SUCH POINTS ON THE RIGHT SIDE. POINTS
ON BOTH LISTS ARE ORDERED BY THEIR Y-COORDINATES. M

(def extract-internal-nets
(lambda (top-part)

139

(append (list (append (excise-port-drive
(extract-names wing-layout)())
(sort-by-y (get-nets top-part '(left))

()))
(list (sort-by-y (get-nets top-part '(right)) 0)))))

TAKES A LIST OF POINTS AND RETURNS THE SAME LIST SORTED
BY THEIR Y-COORDINATES

(def sort-by-y
(lambda (list sorted-list)
(cond
((null list) sorted-list)
(t (sort-by-yl (car list) (cdr list) list sorted-list)))))

(def sort-by-yl
(lambda (thing 1 list sorted-list)
(cond
((null 1) (sort-by-y (excise thing list)

(append sorted-list (caar thing))))
((> (point-y (car thing)) (point-y (caar 1)))
(sort-by-yl (car 1) (cdr 1) list sorted-list))
(t (sort-by-yl thing (cdr 1) list sorted-list)))))

REMOVES POINTS WITH THE NAME PORT-DRIVE FROM A LIST OF
POINTS. PORT-DRIVE IS THE NAME GIVEN TO THE SIGNAL THAT
CONTROLS TRI-STATE PADS.

(def excise-port-drive
(lambda (list new-list)
(cond
((null list) new-list)
((equal (caaar list) 'port-drive)
(excise-port-drive (cdr list) new-list))

(t (excise-port-drive (cdr list) (append new-list
(car list)))))))

MAKES A LIST OF THE POINT NAMES OF ALL POINTS IN A LIST
WITH THE ATTRIBUTE 'RING'. THIS ATTRIBUTE IDENTIFIES
POINTS INVOLVED IN PAD ROUTING.

(def extract-names
(lambda (item)
(append
(setify (alpha (function point-name)

(find-attributes item '(ring)))))))

GIVEN A LIST OF NET NAMES, IT EXTRACTS EVERY OCCURRENCE
OF THOSE POINTS FROM A LIST OF POINTS.

(def get-nets
(lambda (list side)
(get-netsl list (get-names list side) ()))

(def get-netsl
(lambda (list net-names output)
(cond
((null net-names) output)

140

"' . .. n ' m i / - I | i- I -

(t (get-netsl list
(cdr net-names)
(append output

(list (find-all list
(car net-names))))))))

EXTRACTS NAMES OF POINTS HAVING A SPECIFIED ATTRIBUTE.
IN THIS INSTANCE THE ATTRIBUTE COULD BE 'LEFT' OR

;'RIGHT'.
(def get-names
(lambda (item side)
(setify (alpha (function point-name)

(find-attributes (get-ring-net item) side)))))

EXTRACTS EVERY POINT WITH THE ATTRIBUTE 'RING' FROM
A LIST OF POINTS.

(def get-ring-net
(lambda (item)
(get-ring-netl item

(extract-names item)
()))

(def get-ring-net1
(lambda (item name-list internal-connections)
(cond
((null name-list) (append

'(nil nil nil nil)
(list internal-connections)))

(t
(get-ring-netl item

(cdr name-list)
(append internal-connections

(find-all item (car name-list))))))))

PIN PLACEMENT

USING THE INFORMATION PROVIDED BY EXTRACT-INTERNAL-NETS,
ARRANGE-PINS CONSTRUCTS A LIST THAT SPECIFIES PAD
LOCATIONS. IT FIRST TRIES TO MINIMIZE CHIP AREA BY
PLACING PADS IN THE LEAST NUMBER OF SIDES. THEN, IT
COMBINES THE LIST OF POINTS FROM EXTRACT-INTERNAL-NETS
WITH THE CLOCK, POWER AND GROUND-PADS.

(def arrange-pins
(lambda (pins sorted-pins extended-top extended-right)
(let ((left (car sorted-pins))

(right (cadr sorted-pins)))
(merge-common-side-lists
(cond

((> (* extended-right 2)
(* (pad-class-width) (+ 5 (length left) 'I

(length right))))

(append (list 2)
(list (order-pins pins

141

(make-top-and-bottom-pin-lists
(reverse left)
right
'((phic) (phib) (phia))

(t (length left) (length right)))))
(t

(cond
((>= (+ extended-top extended-top extended-right)

(* (pad-class-width) (+ 5 (length left)
(length right))))

(append (list
3)

(list (order-pins pins
(append (pre-number-pins

(order-left left ni!i
() 'left)

(pre-number-pins
(order-right right

nil)0) 'right))))))

((>= (* 2 (+ extended-top extended-right))
(* (pad-class-width) (length pins)))

(append (list 4)
(list (order-pins pins

(append
(pre-number-pins
(order-left
(append left

'((phia) (phib)
(phic)))

'set)
() 'left)

(pre-number-pins
(order-right
(append '((power)) right

'((ground)))
'set) (0 'right)))))))))))))

MERGES LISTS PERTAINING TO THE SAME SIDE. FOR EXAMPLE:
(((... 1) (... 2) TOP) ((...3) (...4) TOP)) WOULD RESULT IN
((.. .1) (...2) (...3) (...4) TOP). THE FUNCTION FINDS
4HICH LISTS TO MERGE BASED ON THE NUMBER OF SIDES SLATED
FOR PAD PLACEMENT. WITH THIS INFORMATION, THE FUNCTION
KNOWS WHERE IN THE NET LIST THE INDIVIDUAL LIST SEGMENTS
ARE LOCATED. (LENGTH (CADR NETS)) RETURNS THE NUMBER OF
PAD LISTS IN THE LIST. SINCE THE LIST IS OF FORM:
(NIL NIL NIL NIL NIL NIL NIL (.. TOP) (.. RIGHT)...
A VALUE OF 7 INDICATES NO PIN-LISTS.

(def merge-common-side-lists
(lambda (nets)
(cond
(((car nets) 3) ;(CAR NETS) = NUMBER OF SIDES PINS ARE

LOCATED

142

- -" • ' , -I- 1] -- A

iS

(cond
(((length (cadr nets)) 11) ;7=NIL 4 ACTUAL PIN-LISTS

(merge-side-lists nets 'top))
(t nets)))

(t
(cond
((= (length (cadr nets)) 13) ;7=NIL 6 ACTUAL PINLISTS

(merge-top-and-bottom-lists nets))
((= (length (cadr nets)) 12) ;7=NIL 5 ACTUAL PINLISTS

(merge-top-or-bottom-lists nets))
(t nets))))))

MERGES LISTS IN A LIST WITH THE SAME 'SIDE' ATTRIBUTE.
(def merge-side-lists
(lambda (item side)
(append (list (car item))

(list (append (find-net (cadr item) side)
(delete-net-lists (cadr item) side ())))))

USED WHEN PADS ARE PLACED ON THE TOP AND BOTTOM ONLY.
(def merge-top-and-bottom-lists
(lambda (item)
(append (list (car item))

(list (append (find-net (cadr item) 'top)
(find-net (cadr item) 'bottom)
(delete-net-lists

(delete-net-lists (cadr item) 'top ()
'bottom ())))))

WHEN ONLY THREE SIDES ARE USED TO PLACE PADS, THIS
FUNCTION LOOKS FOR TWO INSTANCES OF TOP OR BOTTOM
OCCURRING.

(def merge-top-or-bottom-lists
(lambda (item)
(cond
((null (cddr (find-net (cadr item) 'top)))
(merge-side-lists item 'top))
(t (merge-side-lists item 'bottom)))))

GIVEN A LIST AND A PARAMETER, IT RETURNS 'T' IF THE
PARAMETER EXISTS IN THE LIST, NIL OTHERWISE. USED
BY MERGE-TOP-OR-BOTTOM-LISTS TO DETERMINE IF THE
COMMON SIDE PARAMETER IS TOP OR BOTTOM

(def find-net
(lambda (item side)
(find-neti

(such-that item
(flambda (element)

(equal side (car (reverse element))))))))

(def find-neti
(lambda (item)
(list (append (cdr (reverse (car item)))

143

- *.*i .! - -II i / / /

(Cadr item)))))

DELETES THE SECOND LIST APPEARING WITH THE 'SIDE'
ATTRIBUTE.

(def delete-net-lists
(lambda (item side out)
(cond
((null item) out)
(t
(cond
((equal side (car (reverse (car item))))
(delete-net-lists (cdr item) side out))

(t
(delete-net-lists (cdr item)

side
(append out
(list (car item))))))))))

USED WHEN ALL PINS CAN FIT ON TOP AND BOTTOM SIDES
ONLY. CLOCK PADS ARE DISTRIBUTED AMONG THE LEFT AND
RIGHT LISTS IN AN EFFORT TO EQUALIZE THE NUMBER OF
PADS IN THOSE LISTS. THE PARAMETER TIMES, THE
DIFFERENCE IN THE NUMBER OF ELEMENTS BETWEEN THE
ORIGINAL LEFT AND RIGHT LISTS, DETERMINES THE ACTUAL
DISTRIBUTION. POWER IS ALWAYS APPENDED TO THE LEFT LIST,
AND GROUND IS ALWAYS APPENDED TO THE RIGHT LIST. THE
LEFT LIST IS PLACED ALONG THE BOTTOM. IF THE PADS DON'T
FIT, THE EXCESS IS PLACED ON THE LEFT CORNER OF THE TOP
SIDE. PADS THAT CONNECT TO THE RIGHT SIDE ARE PLACED
ALONG THE TOP. AGAIN, IF THEY DON'T FIT, THE EXCESS IS
PLACED ALONG THE RIGHT CORNER OF THE BOTTOM SIDE.

(def make-top-and-bottom-pin-lists
(lambda (left right phi-list times)
(cond
((= times 0)
(cond
((null phi-list)
(append (list (number-pins (append left '((power)))

'bottom 'left 1))
(list (number-pins (append right '((ground)))

'top 'right
(fix (/ extended-right

(pad-class-width)))))))
(t
(cond
((= (length phi-list) 2)
(append (list (number-pins (append left (cadr phi-list)

'((power)))
'bottom 'left 1))

(list (number-pins (append right '((ground))
(car phi-list))

'top 'right
(fix

144

l

(U extended-right
(pad-class-width)))))))

(t
(append (list (number-pins (append phi-list left

'((power)))
'bottom 'left 1)

(list (number-pins
(append right '((ground)))
'top 'right
(fix (extended-right

(pad-class-width)))))))))))
((> times 0)
(cond
((null phi-list)
(cond
((and
(< (* (length left) (pad-class-width)) extended-right)
(< (* (length right) (pad-class-width)) extended-right))

(append (list (number-pins (append left '((power)))
'bottom 'left 1))

(list (number-pins
(append right '((ground)))
'top 'right
(fix (U extended-right

(pad-class-width)))))))
(t
(make-top-and-bottom-pin-lists (reverse

(cdr (reverse left)))
(append
right
(list
(car (reverse left))))() 0(
(if (= times 1)

0
(- times 2))))))

(t
(append (list (number-pins (append left '((power)))

'bottom 'left 1))
(list (number-pins

(append phi-list '((ground)) right)
'top 'right
(fix (extended-right

(pad-class-width))))))))
(t
(cond
((null phi-list)
(cond
((and (< (* (length left) (pad-class-width))

extended-right)
(< (* (length right) (pad-class-width))

extended-right))
(append (list (number-pins (append left '((power)))

'bottom 'left 1))

145

(list (number-pins (append right '((ground)))
'top 'right
(fix
(extended-right

(pad-class-width)))))))(t

(make-top-and-bottom-pin-lists (append (list (car right))
left)

(cdr right)
()
(if (= times -1)

0
(+ 2

times))))))
(t
(make-top-and-bottom-pin-lists (append left (car phi-list))

right
(cdr phi-list)
(+ 1 times))))))))

WHEN PAD PLACEMENT IS TO OCCUR ON THREE OR FOUR SIDES,
T7 THE PAD LIST FITS ON THE LEFT SIDE, ORDER-SIDE IS
CALLED TO PLACE ALL PADS ON THE LEFT SIDE. OTHERWISE,
PADS ARE PLACED ALONG THE BOTTOM UNTIL A COUNTER REACHES
A VALUE EQUAL TO HALF THE EXCESS OF PADS. NEXT
ORDER-SIDE IS CALLED TO PLACE PADS UNTIL THE LEFT SIDE IS
FILLED. ANY REMAINING PADS ARE PLACED ALONG THE TOP.

(def order-left
(lambda (list flag)
(let ((topsize (fix (/ extended-top (pad-class-width)))))

(cond
((eq flag 'set)
(order-bottom list

(fix (U (- (length list) topsize) 2))
o 0 'left))

(t
(order-side list 1 () () 'left))))))

SEE COMMENTS FOR ORDER-LEFT
(def order-right
(lambda (list flag)
(let ((topsize (fix (/ extended-top (pad-class-width)))))

(cond
((eq flag 'set)
(order-bottom list

(fix (U (- (length list) topsize) 2))
0 () 'right))

(t
(order-side list 1 () 0 'right))))))

PLACES PADS ON EITHER THE RIGHT OR LEFT SIDES UNTIL
THE COUNTER INSTANCE ADVANCES TO TOP-SIZE. TOP-SIZE
EQUALS THE NUMBER OF PADS THAT FIT ON THE LEFT/RIGHT

146

vu~~~ um WA1'R.X

SIDE.
(def order-side
(lambda (side-list instance out out1 flag)
(cond
((= instance topsize)
(cond
((null side-list)
(cond
((eq flag 'left)
(order-top 0

(append (list (append (list outl) '(left)))
out)

0))
(t (append (list (cons '(right) out))))))

(t
(cond
((eq flag 'left)
(order-top (cdr side-list)

(append (list
(append (list (append outk

(list
(car side-list))))

'(left)))
out)

())
(t
(order-top (cdr side-list)

(append (list
(cons (append outl

(list (car side-list)))
'(right)))

out)))))))
(t
(reverse (order-side (cdr side-list)

(1+ instance)
out
(append outi (list (car side-list)))

flag))))))

PLACES PADS ALONG THE BOTTOM SIDE UNTIL THE COUNTER
INSTANCE = TIMES.

(def order-bottom
(lambda (side-list times instance out flag)
(cond
((= instance times)
(order-side side-list

(list (append (list out) '(bottom)))

flag))
(t
(order-bottom (cdr side-list)

times
(1+ instance)

147

F m !R

1
(append out (list (car side-list)))
flag)))))

PLACES PADS ALONG THE TOP UNTIL THE PAD LIST IS
EXHAUSTED.

(def order-top
(lambda (side-list out outi)
(cond
((null side-list)
(cond
((eq 'left (car (reverse (car out))))
(append (list (append (list out1)

'(top)))
out))

(t
(append (list (cons outi '(top))) out))))

(t
(cond
((eq 'left (car (reverse (car out))))
(order-top (cdr side-list)

out
(append outl (list (car side-list)))))

(t
(order-top (cdr side-list)

out
(append (list (car side-list)) outl))))))))

; PINS IS A LIST CONTAINING FULL PAD NAMES. SORTED-PINS
; IS A LIST CONTAINING POINTS. ORDER-PINS RETURNS
A LIST OF PAD NAMES IN THE ORDER OF SORTED-LIST.
THIS IS NECESSARY BECAUSE THE FUNCTION PAD-LAYOUT
REQUIRES PAD NAMES TO FULLY IDENTIFY A PAD.

(def order-pins
(lambda (pins sorted-pins)
(cond
((null sorted-pins) (null-item))
(t
(append
(list (excise (null-item)

(order-pinsl pins
(cdr (reverse (car sorted-pins)))

(car (reverse
(car sorted-pins))))))

(order-pins pins (cdr sorted-pins)))))))

(def order-pinsl
(lambda (pins work-list side)
(cond
((null work-list) (list side))
(t
(append (list (order-pins2 pins (car work-list) side))

(order-pinsl pins (cdr work-list) side))))))

148

J.

(def order-pins2
(lambda (pins work-list side)
(cond
((or (is-pad-output4? (cadar pins))

(is-pad-output8? (cadar pins)))
(cond
((and (eq (cadaddadr (car pins)) (cadar work-list))

(eq (caddaddadr (car pins)) (caddar work-list)))
(append (cdr work-list) (cdar pins)))
(t
(order-pins2 (cdr pins) work-list side))))

((or (is-pad-tri-state4? (cadar pins))
(is-pad-tri-state8? (cadar pins)))

(cond
((and (eq (cadaddadr (car pins)) (cadar work-list))

(eq (caddaddadr (car pins)) (caddar work-list)))
(append (cdr work-list) (cdar pins)))
(t
(order-pins2 (cdr pins) work-list side))))

((or (is-pad-power? (cadar pins))
(is-pad-ground? (cadar pins))
(is-pad-phia? (cadar pins))
(is-pad-phib? (cadar pins))
(is-pad-phic? (cadar pins)))

(cond
((eq (caadr (car pins)) (caar work-list))
(append (cdr work-list) (cdar pins)))
(t
(order-pins2 (cdr pins) work-list side))))

((is-pad-input? (cadar pins))
(cond
((if (= (length (car (reverse (cadr (car pins))))) 2)

(eq (cadar (reverse (cadr (car pins))))
(cadar work-list))

(and (eq (cadar (reverse (cadr (car pins))))
(cadar work-list))

(eq (caddar (reverse (cadr (car pins))))
(caddar work-list))))

(append (cdr work-list) (cdar pins)))
(t
(order-pins2 (cdr pins) work-list side))))

(t (null-item)))))

PRE-NUMBER-PINS AND PRE-NUMBER-PINSI ARE USED WHEN
PADS ARE PLACED ON THREE OR FOUR SIDES. THESE
FUNCTION ENSURE THAT THE INTERNAL TRMINATION SITE,
LEFT OR RIGHT, ARE CONSIDERED IN NUMBER ASSIGNMENT.
FOR EXAMPLE, PADS ALONG THE TOP THAT CONNECT TO THE
RIGHT SIDE OF THE CIRCUIT SHOULD BE POSITIONED ON
THE RIGHT CORNER, WHILE THOSE THAT CONNECT TO THE LEFT
SIDE ARE PLACED ON THE LEFT CORNER.

(def pre-number-pins

149

AN

(lambda (list out flag)
(cond
((null list) out)
(t
(append out (pre-number-pinsl (cdr list) (caar list)

(cadar list) flag))))))

(def pre-number-pinsi
(lambda (list side-list sidel flag)
(cond
((and (or (eq sidel 'top) (eq sidel 'bottom))

(eq flag 'right))
(pre-number-pins list

(list (number-pins
(if (eq flag 'top)

side-list
(reverse side-list))

sidel
flag
(fix (U extended-right

(pad-class-width)))))
flag))

(pre-number-pins list
(list (number-pins side-list sidel

flag))
flag)))))

ASSIGNS A NUMBER TO EACH PIN THAT, ALONG WITH THE SIDE,
LOCATES EACH PAD. NUMBERS FOR PINS ON THE TOP OR
BOTTOM SIDES THAT CONNECT TO THE LEFT SIDE ARE ASSIGNED
BY A COUNTER STARTING AT 0. THE COUNTER FOR PADS THAT
CONNECT TO THE RIGHT SIDE STARTS WITH THE MAXIMUM NUMBER
(THE PAD AT THE RIGHT CORNER) AND COUNTS DOWN UNTIL THE
LIST IS EXHAUSTED.

(def number-pins
(lambda (list sidel side2 pin-number)
(cond
((null list) (list sidel))
((and (or (eq sidel 'top) (eq sidel 'bottom))

(eq side2 'right))
(append (list (cons (car list) (list pin-number)))

(number-pins (cdr list) sidel side2
(1- pin-number))))

(t
(append (list (cons (car list) (list pin-number)))

(number-pins (cdr list) sidel side2
(1+ pin-number)))))))

PINS-DIMENSIONS DETERMINES THE DIMENSIONS OF THE CIRCUIT.
IT'S OUTPUT IS A FOUR NUMBER VECTOR CONTAINING THE
POSITIONS OF THE TOP, RIGHT BOTTOM AND LEFT SIDES OF THE
CIRCUIT. VARIOUS PARAMETERS ARE CONSIDERED IN
CALCULATING THESE NUMBERS. AMONG THEM:

150

Y11 or w, o

E-EMKW~kIVA

1. MAXIMUM PAD-HEIGHT FOUND IN THAT SIDE
2. SIZE OF THE INTERNAL CIRUIT LAYOUT
3. POWER AND GROUND RING REQUIREMENTS
4. RING-WIDTH

(def pins-dimensions
(lambda (pin-net pins power ring-width extended-right

extended-top)
(cond

WHEN PADS PLACED ON TOP AND BOTTOM SIDES ONLY
((>= (* 2 extended-right) (* (length pins) (pad-class-width)))
(make-dimensions
0
(+ extended-top (ring-width-top ring-width) power power 3

RETURNS THE HEIGHT OF THE TALLEST PAD ON
THE TOP PAD LIST

(slash-alpha (cdr (reverse (cadr pin-net)))
(pad-class-basic-height)

(function max)
(flambda (pin) (pin-height pin

power))))
(+ extended-right (ring-width-right ring-width) power 3)
(- 0 (ring-width-bottom ring-width) pins-power power power 3

RETURNS THE HEIGHT OF THE TALLEST PAD ON
THE BOTTOM PAD LIST

(slash-alpha (cdr (reverse (car pin-net)))
(pad-class-basic-height)
(function max)
(flambda (pin) (pin-height pin power))))

(- 0 (ring-width-left ring-width) power power 6)))
((>= (+ extended-top extended-top extended-right)

(* (length pins) (pad-class-width)))
(make-dimensions
0
(+ extended-top (ring-width-top ring-width) power power 3

(slash-alpha (cdr (reverse (car pin-net)))
(pad-class-basic-height)
(function max)
(flambda (pin) (pin-height pin power))))

(+ extended-right (ring-width-right ring-width)
power power 3 (slash-alpha

(cdr (reverse (caddr pin-net)))
(pad-class-basic-height)
(function max)
(flambda (pin) (pin-height pin power))))

(- 0 (ring-width-bottom ring-width) power power 3)
(- 0 (ring-width-left ring-width) power power 3

(slash-alpha (cdr (reverse (cadr pin-net))) p

(pad-class-basic-height)
(function max)
(flambda (pin) (pin-height pin power))))))

(t
(make-dimensions

151

0
(+ extended-top (ring-width-top ring-width) power power 3
(slash-alpha (cdr (reverse (car pin-net)))

(pad-class-basic-height)
(function max)
(flambda (pin) (pin-height pin power))))

(+ extended-right (ring-width-right ring-width)
power power 3 (slash-alpha

(cdr (reverse (cadddr pin-net)))
(pad-class-basic-height)
(function max)
(flambda (pin) (pin-height pin power))))

(- 0 (ring-width-bottom ring-width) power power 3
(slash-alpha (cdr (reverse (cadr pin-net)))

(pad-class-basic-height)
(function max)
(flambda (pin) (pin-height pin power))))

(- 0 (ring-width-left ring-width) power power 3
(slash-alpha (cdr (reverse (caddr pin-net)))

(pad-class-basic-height)
(function max)
(flambda (pin) (pin-height

pin power)))))))))

GIVEN THE COMPLETE PAD NETS, PLACE-PINS BREAKS OFF THE
LIST OF PADS FOR ONE SIDE AND GIVES IT TO PLACE-PINS1
FOR FURTHER PROCESSING. DIMENSIONS VALUES ARE OBTAINED
FROM PINS-DIMENSIONS. POWER IS THE WIDTH OF THE SKELETON
POWER/GROUND RAILS.

(def place-pins
(lambda (pin-list dimensions power)
(cond
((= (length pin-list) 7) (null-item))
(t
(merge (place-pinsi (cdr (reverse (car pin-list)))

(car (reverse (car pin-list)))
dimensions power)

(place-pins (cdr pin-list) dimensions power))))))

GIVEN A LIST OF PADS ON A GIVEN SIDE, PLACE-PINS1 PEELS
OFF INDIVIDUAL PADS AND GICES THEM TO PLACE-PIN FOR
FURTHER PROCESSING.

(def place-pinsl
(lambda (pin-listl side dimensions power)
(let ((top (dimensions-top dimensions))

(right (dimensions-right dimensions))
(bottom (dimensions-bottom dimensions))
(left (dimensions-left dimensions)))

(cond
((null pin-listl) (null-item))
(t
(merge (place-pin (cadar pin-listl)

(caar pin-listl) side power)
(place-pinsl (cdr pin-listl) side

152

,

f%

dimensions power)))))))

PLACES AND ORIENTS THE PIN LAYOUTS. THE ACTUAL
LAYOUT IS PRODUCED BY LAYOUT-PAD. ORIGINAL PAD
ORIENTATION IS SUITED FOR LAYING PADS ON THE BOTTOM.
TO OBTAIN CORRECT ORIENTATIONS FOR THE OTHER SIDES,
THE L5 FUNCTION MIRRORX (PRODUCES AN IDENTICAL IMAGE
AS IF THE X-AXIS WERE A MIRROR) IS USED FOR THE TOP,
THE L5 FUNCTION ROTCCW (ROTATE COUNTER CLOCKWISE) IS
USED FOR THE RIGHT SIDE,
THE L5 FUNCTION ROTCW (ROTATE CLOCKWISE) IS USED FOR
THE LEFT SIDE.
THE PRODUCT OF THE PIN-NUMBER AND THE WIDTH OF THE
PAD-CLASS PROVIDES THE X-COORDINATE POSITION WHEN
PLACING PADS ON THE TOP OR BOTTOM SIDES, AND THE
Y-COORDINATE FOR THE RIGHT AND LEFT SIDES.

(def place-pin
(lambda (pin pin-number side power)
(cond
((eq side 'top)
(move (mirrorx (layout-pad pin power 'top))

(* (pad-class-width) (1- pin-number))
top))

((eq side 'right)
(move (rotccw (layout-pad pin power 'right))

right
(* (pad-class-width) (1- pin-number))))

((eq side 'bottom)
(move (layout-pad pin power 'bottom)

(* (pad-class-width) (1- pin-number))
bottom))

(t
(move (rotccw (mirrorx (layout-pad pin power 'left)))

left
(* (pad-class-width) (1- pin-number)))))))

LAYOUT-GROUND-RING BUILDS A METAL1 RING ON THE INTERIOR
PAD BOUNDARY AND CONNECTS IT TO THE SKELETON GROUND RAIL
SITUATED ON THE TOP OF THE INTERNAL CIRCUIT LAYOUT. THE
THE LAYOUT DEPENDS ON THE NUMBER OF SIDES USED TO PLACE
PADS, THE SIZE OF THE INTERNAL LAYOUT, THE DIMENSIONS
OBTAINED FROM PINS-DIMENSIONS, AND THE LOCATION OF THE
POWER PAD. THIS ROUTINE WILL ONLY LAY METAL WHERE
REQUIRED. FOR LAYOUTS WITH PADS ON 2 OR 3 SIDES, THE
RING CONSISTS OF WIRES ON THE LEFT, RIGHT AND TOP SIDES
WITH A CONNECTION TO GROUND-PAD. FOR LAYOUTS WITH PADS
ON 4 SIDES, THE RING CONSISTS OF WIRES ON ALL FOUR SIDES.

(def layout-ground-ring
(lambda (pins-power power dimensions extended-right extended-top

power-point ground-point sides)
(let ((offset (+ pins-power (pad-class-basic-height))))
(let ((top (- (dimensions-top dimensions) offset))

(right (- (dimensions-right dimensions) offset))
(bottom (+ (dimensions-bottom dimensions) offset))

153

(left (+ (dimensions-left dimensions) offset)))
(cond
((= sides 2)
(merge

(rect 'NM (- (point-x ground-point) (/up power 2))
intended-top

(+ (point-x ground-point) (/up power 2))
(point-y ground-point))

(rect 'NM (+ (- left offset) pins-power 3)
(- top pins-power)
extended-right
top)

(rect 'NM (+ (- left offset) pins-power 3)
bottom
(- (point-x power-point) (/up (pad-class-width)

2))
(+ bottom pins-power))

(rect 'NM ((- left offset) pins-power 3)
bottom
(+ (- left offset) pins-power pins-power 3)
top))

((= sides 4)
(merge
(rect 'NM (- (point-x ground-point) (/up power 2))

intended-top
(+ (point-x ground-point) (/up power 2))
(point-y ground-point))

(rect 'NM left
bottom
(+ left pins-power)
top)

(rect 'NM left
(- top pins-power)
right
top)

(rect 'NM (- right pins-power)
bottom
right
top)

(rect 'NM left
bottom
(- (point-x power-point) (/up (pad-class-width)

2))
(+ bottom pins-power))

(rect 'NM (+ (point-x power-point) (/up (pad-class-width)
2))

bottom
right
(+ bottom pins-power))))

(t
(merge
(rect 'NM (- (point-x ground-point) (/up power 2))

intended-top
(+ (point-x ground-point) (/up power 2))

1 54

(point-y ground-point))
(rect 'NM left

bottom
(+ left pins-power)top)-

(rect 'NM left
(- top pins-power)
right
top)

(rect 'IM (- right pins-power)
(+ bottom (pad-class-width))
righttop)))))))) ,

RETURNS A LIST OF FOUR NUMBERS THAT INDICATE THE WIDTH
REQUIRED BY THE TOP, RIGHT, BOTTOM AND LEFT PAD ROUTING
CHANNELS.

(def get-ring-width
(lambda (item right top)
(make-ring-width
(* 7 (if (null (extract-nets item 'top right top))

0

(net-track-number
(minmax (extract-nets item 'top right top)

(flambda (netl net2)
(> (net-trac&-number netl)

(net-track-number net2))))))
(* 7 (if (null (extract-nets item 'right right top))

0
(net-track-number
(minmax (extract-nets item 'right right top)

(flambda (neti net2)
(> (net-track-number netl)

(net-track-number net2)))))))
(* 7 (if (null (extract-nets item 'bottom right top))

0(net-track-number

(minmax (extract-nets item 'bottom right top)
(flambda (netl net2)

(> (net-track-number neti)
(net-track-number net2)))))))

(* 7 (if (null (extract-nets item 'left right top))
0
(net-track-number
(minmax (extract-nets item 'left right top)

(flambda (netl net2)
(> (net-track-number netl)

(net-track-number net2)))))))),

NET EXTRACTION

GIVEN A LIST OF POINTS RETURNS A LIST OF THE POINT

155

%

Y-COORDINATES, ORDERED FROM LEAST TO GREATEST.
(def sort-y
(lambda (list sorted-list)
(cond
((null list) sorted-list)
(t (sort-yl (car list) (cdr list) list so-ted-list)))))

(def sort-yl.
(lambda (thing 1 list sorted-list)
(cond
((null 1) (sort-y (excise thing list)
(append sorted-list (list (point-y (car thing))))))

((> (point-y (car thing)) (point-y (caar 1)))
(sort-yl (car 1) (cdr 1) list sorted-list))
(t (sort-yl thing (cdr 1) list sorted-list)))))

PREP-PAD-BANK IDENTIFIES THE LOCATION OF THE GROUND
;AND POWER PADS AND CALLS ON LEFT-PAD-BANK AND
RIGHT-PAD-BANK TO BUILD THE PAD NET LIST.

(def prep-pad-bank
(lambda (list side)
(let ((ground-point (point-x (find pins-layout '(ground))))

(power-point (point-x (find pins-layout '(power)))))
(cond
((eq side 'left)
(left-pad-bank (get-nets list '(bottom))

(get-nets list '(left)) k
(get-nets list '(top))))

(t
(right-pad-bank (get-nets list '(bottom))

(get-nets list '(right)) o

(get-nets list '(top))))))))

IDENTIFIES THOSE PADS LOCATED TO THE LEFT OF THE
POWER PAD, IF ON THE BOTTOM, AND TO THE LEFT OF
THE GROUND PAD, IF ON THE TOP AND RETURNS A LIST

; THAT PINPOINTS THEIR LOCATION AS FOLLOWS:
I. IF PAD IS ON THE LEFT SIDE,

; USE THE PAD'S Y-COORDINATE
2. IF PAD IS ON THE BOTTOM SIDE,

USE THE PAD X-COORDINATE * -1
3. IF PAD IS ON TOP,

USE THE PAD X-COORDINATE + EXTENDED-TOP.
(def left-pad-bank
(lambda (bottom left top)

(append
(reverse
(map-argument 'times -1

(extract-points bottom power-point '< ())))
(mapcar 'caddar left) ;;CADDR = POINT-Y
(map-argument 'plus extended-top

(extract-points top ground-point '< 0)))))

156

* - J~ ~ ~ ,,-~ ~ r%.-%(~ \:0

IDENTIFIES THOSE PADS LOCATED TO THE RIGHT OF THE
POWER PAD, IF ON THE BOTTOM, AND TO THE RIGHT OF
THE GROUND PAD, IF ON THE TOP AND RETURNS A LIST
THAT PINPOINTS THEIR LOCATION AS FOLLOWS:

1. IF PAD IS ON THE RIGHT SIDE,
USE THE PAD'S Y-COORDINATE

2. IF PAD IS ON THE BOTTOM SIDE,
USE THE PAD X-COORDINATE * -1

3. IF PAD IS ON TOP,
USE THE PAD X-COORDINATE + EXTENDED-TOP.

(def right-pad-bank
(lambda (bottom right top)
(append
(map-argument 'times -1

(extract-points bottom power-point '> 0) 0)
(mapcar 'caddar right)
(map-argument 'plus extended-top

(extract-points top ground-point '> 0) 0))))

EXTRACTS FROM A LIST OF POINTS THOSE POINTS THAT MEET
THE CONDITION SET BY PREDICATE WITH RESPECT TO THE
PARAMETER POINT.

(def extract-points
(lambda (list point predicate output) S
(cond
((null list) output)
(t
(cond
((predicate (cadaar list) point)
(extract-points (cdr list) point predicate

(append output (list (cadaar list)))))
(t (extract-points (cdr list) point predicate output))))))

APPLIES THE FUNCTION SPECIFIED BY PREDICATE AND THE
ARGUMENT SPECIFIED BY THE PARAMETER ARGUMENT TO EVERY
ELEMENT OF A LIST. fOR EXAMPLE,
(MAP-ARGUMENT '+ 4 LIST), ADDS 4 TO EVERY ELEMENT IN
LIST.

(def map-argument
(lambda (predicate argument list output)
(cond
((null list) output)
(t (map-argument predicate argument (cdr list)

(append output
(list (predicate (car list)

argument))))

NET LAYOUT

TOP-LEVEL OF PAD ROUTING ROUTINES. THE PROBLEM IS
DIVIDED IN TWO; THE LEFT AND RIGHT ROUTING PROBLEM.
MOAT BREAKS THE NET-LISTS IN TWO. INNER-BANK CONTAINS
THE INTERNAL NET TERMINALS AND OUTER-BANK THE PAD]

157

TERMINALS. THE NET-LISTS ARE PASSED TO ROUTE-LEFT-BOTTOM
OR ROUTE-RIGHT-BOTTOM. THESE ROUTE ALL NETS WITH PADS ON
THE BOTTOM. WHEN FINISHED, IT PASSES WHAT REMAINS OF THE
NET-LIST TO ROUTE-LEFT-SIDE OR ROUTE-RIGHT-SIDE. THESE
ROUTE NETS WITH PADS ON THE LEFT OR RIGHT SIDES. WHAT'S
LEFT OF THE NET-LISTS IS THEN ROUTED BY ROUTE-LEFT-TOP
OR ROUTE-RIGHT-TOP.

(def moat
(lambda (left-ring-nets right-ring-nets layer width ring-width)
(declare (special layer width ring-width))
(let ((space 3))
(merge
(let ((inner-bank (car left-ring-nets))

(outer-bank (cadr left-ring-nets)))
(route-left-bottom (car left-ring-nets)

(cadr left-ring-nets) 1))
(let ((inner-bank (car right-ring-nets))

(outer-bank (cadr right-ring-nets)))
(route-right-bottom (car right-ring-nets)

(cadr right-ring-nets)
1))))))

MACROS USED TO EXTRACT THE DESIRED NUMBER FROM
RING-WIDTH.

(defmacro top-width (item)
(list 'car item))

(defmacro right-width (item)
(list 'cadr item))

(defmacro bottom-width (item)
(list 'caddr item))

(defmacro left-width (item)
(list 'cadddr item))

ROUTES NETS BETWEEN PADS ON THE BOTTOM AND CORRESPONDING
TERMINAL ON THE LEFT SIDE UNTIL IT ENCOUNTERS POSITIVE
VALUE IN OUTER-BANK. IT THEN PASSES THE NET-LIST TO
ROUTE-LEFT-SIDE.

(def route-left-bottom
(lambda (t-in t-out track-number)
(cond
((null t-out) (null-item))
((> (car t-out) 0) (route-left-side t-in t-out

'up track-number))
(t

(merge
(rect layer

(abs (+ (car t-out) (U width 2)))
(- 0 power (bottom-width ring-width))
(abs (- (car t-out) (U width 2)))

158

(+ (- 0 (* track-number 7)) width))
(rect layer

(- 0 (* track-number 7))
(- 0 (* track-number 7))
(abs (- (car t-out) (width 2)))
(+ (- 0 (* track-number 7)) width))

(rect layer
(- 0 (* track-number (+ space width)))
(- 0 (* track-number (+ space width)))
- width (* track-number (+ space width)))
(+ (car t-in) (/ width 2)))

(move (poly-cut) (- 0 (* track-number (+ space width)))
(+ (car t-in) (U width 2)))

(rect 'NP (- (U width 2) (* track-number (+ space width)))
(- (car t-in) 1)

(+ power space (U width 2))
(+ (car t-in) 1))

(route-left-bottom (cdr t-in) (cdr t-out)
(+ 1 track-number)))))))

ROUTES NETS BETWEEN PADS ON THE LEFT SIDE AND THE
INTERNAL CIRCUIT UNTIL IT ENCOUNTERS AN ELEMENT IN
OUTER-BANK WITH A VALUE GREATER THAN EXTENDED-TOP.
IT THEN PASSES WHAT REMAINS OF THE LIST TO
ROUTE-LEFT-TOP.

(def route-left-side
(lambda (t-in t-out flag track)
(let ((span (left-width ring-width)))
(cond
((null t-out) (null-item))
((> (car t-out) extended-top)
(route-left-top t-in t-out))

(t
(cond

((= (car t-in) (car t-out))
(merge
(rect 'NM (- 0 power span)

(- (car t-out) (/ width 2))
(-0 space)
(+ (car t-out) (/ width 2)))

(move (poly-cut) (- 0 space width)
(+ (car t-out) (/ width 2)))

(rect 'NP (- 0 space (U width 2))
(- (car t-out) 1)
(+ power space (/ width 2))
(+ (car t-out) 1))

(route-left-side (cdr t-in) (cdr t-out) 'straight 1)))
((> (car t-in) (car t-out))

(merge
(route-left-moat-up (car t-in) (car t-out)

(if (eq flag 'up) track))
(route-left-side (cdr t-in) (cdr t-out) 'up

(if (eq flag 'up) (addl track) 2))))(t

159

.I.V

(merge
(route-left-moat-down (car t-in) (car t-out)

(if (eq flag 'down) track 1))
(route-left-side (cdr t-in) (cdr t-out) 'down

(if (eq flag 'down)
(add1 track) S

ROUTES WHAT REMAINS OF NET-LIST BETWEEN PADS ON TOP
AND TERMINALS ON THE LEFT-SIDE.

(def route-left-top
(lambda (t-in t-out)
(let ((span (top-width ring-width))

(stretch 0))
(cond
((null t-in) (null-item))
(t
(merge
(route-left-topl t-in t-out (length t-in))
(route-left-top (cdr t-in) (cdr t-out))))))))

(def route-left-top1
(lambda (t-in t-out track)
(merge
(rect 'NM (- (car t-out) extended-top (U width 2))

(- (+ extended-top (* (+ space width) track))
width)

(+ (- (car t-out) extended-top) (width 2))
(+ extended-top span power power))

(rect 'NM (- 0 (* (+ space width) track))
(- (+ extended-top (* (+ space width) track))

width)
(+ (- (car t-out) extended-top) (/ width 2))
(+ extended-top (* (+ space width) track)))

(rect 'NM (- 0 (* (+ space width) track))
(- (car t-in) (/ width 2))
(- width (* (+ space width) track))
(+ extended-top (* (+ space width) track)))

(move (poly-cut) (- 0 (* track (+ space width)))
(+ (car t-in) (/ width 2)))

(rect 'NP (- width (U width 2) (* track (+ space width)))
(- (car t-in) 1)

(+ power 3 (width 2))
(+ (car t-in) 1)))))

WHEN THE TERMINAL IN INNER-BANK > TERMINAL FROM
;OUTER-BANK.

(def route-left-moat-up
(lambda (inner outer track)

(merge
(rect 'NM (- 0 span power power)

(- outer (/ width 2))
(- width (* track (+ space width)))
(+ outer (/ width 2)))

(rect 'NM (- 0 (* track (+ space width)))

160

./

(- outer (/ width 2))
width (* track (+ space width)))

(+ inner (width 2)))
(move (poly-cut) (- 0 (* track (+ space width)))

(+ inner (U width 2)))
(rect 'NP (- 0 (* track (+ space width)) (/ width 2))

(- inner 1)
(+ power 3 (width 2))
(+ inner 1)))))

WHEN TERMINAL IN OUTER-BANK > TERMINAL FROM INNER-BANK.
(def route-left-moat-down
(lambda (inner outer track)

(merge
(rect 'NM (- 0 span power power)

(- outer (U width 2))
(- (* track (+ space width)) space span)
(+ outer (/ width 2)))

(rect 'NM (- (* track (+ space width)) span space width)
(- inner (width 2))
(- (* track (+ space width)) span space)
(+ outer (/ width 2)))

(move (poly-cut) (- (* track (+ space width))
span space width)

(+ inner (U width 2)))
(rect 'NP (- (* track (+ space width))

span space (U width 2))
(- inner 1)
(+ power 3 (U width 2))
(+ inner 1)))))

ROUTES NETS BETWEEN PADS ON THE BOTTOM AND CORRESPONDING
TERMINAL ON THE RIGHT SIDE UNTIL IT ENCOUNTERS POSITIVE
VALUE IN OUTER-BANK. IT THEN PASSES THE NET-LIST TO
ROUTE-RIGHT-SIDE.

(def route-right-bottom
(lambda (t-in t-out track-number)
(cond
((null t-out) (null-item))
((> (car t-out) 0) (route-right-side t-in t-out 'up

track-number))
(t
(merge
(rect layer (abs (+ (car t-out) (/ width 2)))

(- 0 (bottom-width ring-width) power)
(abs (- (car t-out) (/ width 2)))
(+ (- 0 (* track-number 7)) width))

(rect layer (abs (+ (car t-out) (/ width 2)))
(- 0 (* track-number 7))
(+ extended-right (* track-number 7))
(+ (- 0 (* track-number 7)) width))

(rect layer (- (+ extended-right (* track-number
(+ space width)))

width)6
161

(- 0 (* track-number (+ space width)))
(+ extended-right (* track-number

(+ space width)))
(+ (car t-in) (/ width 2)))

(move (poly-cut) (- (+ extended-right
(* track-number (+ space width)))

width)
(+ (car t-in) (/ width 2)))

(rect 'NP (- extended-right power 3 power 3)
(- (car t-in) 1)
(+ extended-right space (/ width 2))
(+ (car t-in) 1))

(route-right-bottom (cdr t-in) (cdr t-out)
(+ 1 track-number)))))))

ROUTES NETS BETWEEN PADS ON THE RIGHT SIDE AND THE
INTERNAL CIRCUIT UNTIL IT ENCOUNTERS AN ELEMENT IN
OUTER-BANK WITH A VALUE GREATER THAN EXTENDED-TOP.
IT THEN PASSES WHAT REMAINS OF THE LIST TO
ROUTE-RIGHT-TOP.

(def route-right-side
(lambda (t-in t-out flag track)
(let ((span (right-width ring-width)))
(cond
((null t-out) (null-item))
((> (car t-out) extended-top) (route-right-top t-in t-out))

(t
(cond
((= (car t-in) (car t-out))
(merge
(rect 'NM (+ extended-right space)

(- (car t-in) (/ width 2))
(+ extended-right span power)
(+ (car t-in) (/ width 2)))

(move (poly-cut) (+ extended-right space)
(+ (car t-in) (/ width 2)))

(rect 'NP (- extended-right power 3 power 3 (U width 2))
(- (car t-in) 1)
(+ extended-right space (U width 2))
(+ (car t-in) 1))

(route-right-side (cdr t-in) (cdr t-out) 'straight 1)))
((> (car t-in) (car t-out))

(merge
(route-right-moat-up (car t-in) (car t-out)

(if (eq flag 'up) track 1))
(route-right-side (cdr t-in) (cdr t-out) 'up

(if (eq flag 'up) (addl track) 2)))) (t(merge

(route-right-moat-down (car t-in) (car t-out)
(if (eq flag 'down) track 1))

(route-right-side (cdr t-in) (cdr t-out) 'down
(if (eq flag 'down)

(addl track)
2))))))))))

162

..

WHEN THE TERMINAL IN INNER-BANK > TERMINAL FROM
OUTER-BANK.

(def route-right-moat-up
(lambda (inner outer track)

(merge
(rect 'NM (+ extended-right

(* track (+ space width)))
(- outer (U width 2))
(+ extended-right span power power)
(+ outer (/ width 2)))

(rect 'NM (+ extended-right
(* track (+ space width)))

(- outer (/ width 2))
(+ extended-right width

(* track (+ space width)))
(+ inner (width 2)))

(move (poly-cut) (+ extended-right
(* track (+ space width)))

(+ inner (/ width 2)))
(rect 'NP (- extended-right power 3 power 3 (1 width 2))

(- inner 1)
(+ extended-right (/ width 2)

(* track (+ space width)))
(+ inner 1)))))

WHEN THE TERMINAL IN INNER-BANK < TERMINAL FROM
OUTER-BANK.

(def route-right-moat-down
(lambda (inner outer track)

(merge
(rect 'NM (- (+ extended-right space span)

(* track (+ space width)))
(- outer (/ width 2))
(+ extended-right span space power power)
(+ outer (width 2)))

(rect 'NM (- (+ extended-right span space)
(* track (+ space width)))

(- inner (U width 2))
(- (+ extended-right span width space)

(* track (+ space width)))
(+ outer (/ width 2)))

(move (poly-cut) (- (+ extended-right span space)
(* track (+ space width)))

(+ inner (U width 2)))
(rect 'NP (- extended-right power 3 power 3 (U width 2))

(- inner ")
(- (+ extended-right span (U width 2) space)

(* track (+ space width)))
(+ inner 1)))))

;ROUTES WHAT REMAINS OF NET-LIST BETWEEN PADS ON TOP
;AND TERMINALS ON THE LEFT-SIDE.

(def route-right-top
,lambda (t-in t-out)

(let ((span (top-width ring-width))

163

(stretch 0))
(cond
((null t-in) (null-item))
(t
(merge
(route-right-topl t-in t-out (length t-in))
(route-right-top (cdr t-in) (cdr t-out))))))))

(def route-right-topi
(lambda (t-in t-out track)
(merge
(rect 'NM (- (car t-out) extended-top (I width 2))

(- (+ extended-top (* (+ space width) track))
width)

(+ (- (car t-out) extended-top) (/ width 2))
(+ extended-top span power power))

(rect 'NM (- (car t-out) extended-top (/ width 2))
(- (+ extended-top (* (+ space width) track))

width)
(+ extended-right (* track (+ space width)))
(+ extended-top (* (+ space width) track)))

(rect 'NM (- (+ extended-right (* (+ space width) track))
width)

(- (car t-in) (/ width 2))
(+ extended-right (* (+ space width) track))
(+ extended-top (* (+ space width) track)))

(move (poly-cut) (- (+ extended-right
(* track (+ space width)))

width)
(+ (car t-in) (/ width 2)))

(rect 'NP (- extended-right power 3 power 3 (U width 2))
(- (car t-in) 1)
(- (+ extended-right (* track (+ space width)))

(width 2))
(+ (car t-in) 1)))))

)

164

A

|4 F

APPENDIX C

SOURCE CODES FOR TEST CIRCUITS

A. MEMORY

(program memory 2
(def 11 power)
(def I ground)
(def 2 phia)
(def 3 phib)
(def 4 phic)
(def on signal input 5)
(def reset signal input 6)
(def a port input (7 8))
(def b register)
(def c port output (9 10))
(proces proci 0
off

(cond (on (go start))
(t (go off)))

start
(cond (on (setq b a)

(setq c b)
(go start))

(t (setq b a) (go off)))))

B. TEST

(program test 2
(def 10 power)
(def 1 ground)
(def 2 phia)
(def 3 phib)
(def 4 phic)
(def on signal input 5)
(def reset signal input 6)
(def a port input (7 8))
(def b register)
(def c port output (9 10))
(process procl 0
run (setq b a)

(setq c b)
(go run)))

165

C. MULTIP4

(program multip4 4
(def 1 ground)
(def ain port input (2 3 4 5))
(def aO register)
(def al register)
(def a2 register)
(def bin port input (6 7 8 9))
(def b0 register)
(def bI register)
(def b2 register)
(def res port output (10 11 12 13))
(def rO register)
(def r1 register)
(def r2 register)
(def 14 phia)
(def 15 phib)
(def 16 phic)
(def reset signal input 17)
(def 18 power)
(always
(cond ((bit 0 bin) (setq rO (>> (bit 0 amn) ain)))

(t (setq roOM)
(cond ((bit 1 bo) (setq ri (>> (bit 0 (+ rO aO)) (+ rO aO)

(t (setq ri (>> (bit 0 r0) rO)
(cond ((bit 2 bi) (setq r2 (>> (bit 0 (+ ri al))/ (+ ri a)

(t (setq r2 (>> (bit 0 ri) r)
(cond ((bit 3 b2) (setq res (>> (bit 0 (+ r2 a2))

(+ r2 a2))))
(t (setq res (>> (bit 0 r2) r2))))

(cond (reset (setq ao 0)
(setq bO 0)
(setq al 0)
(setq bi 0)
(setq a2 0)
(set qb2 0)

(t (setq ao ain)
(setq bO bin)
(setq al ao)
(setq bi bo)
(setq a2 al)
(setq b2 bi))))

166

D. TAXI

(program taxi 8
(def 17 power)
(def 1 ground)
(def 2 phia)
(def 3 phib)
(def 4 phic)
(def timer register)
(def fare register)
(def reset signal input 5)
(def time-on signal input 6)
(def hire signal input 7)
(def mile-mark signal input 8)
(def display port inp[ut (9 10 11 12 13 14 15 16))
(def charge-time signal internal)
(def maximum-time constant 100)
(def base-fare constant 20) S
(def cost-per-mile constant 50)
(def cost-per-time constant 10)
(process time-clock 0
off
(cond (time-on (setq timer 0) (go on))

(t (go off)))
on
(cond (time-on (cond ((= timer maximum-time)

(setq timer 0)
(signal charge-time)

(t (setq timer (1+ timer))))
(go on))

(t (setq timer 0) (go off))))
(process fare-clock 0
for-hire
(cond (hire (setq fare base-fare) (go hired))

(t (go for-hire)))
hired
(par (cond ((not hire) (go for-hire))

((and charge-time mile-mark)
(setq fare (+ (+ fare cost-per-mile)

cost-per-time))
(go hired))

(charge-time
(setq fare (+ fare cost-per-time)) .'"
(go hired))

(mile-mark
(setq fare (+ fare cost-per-mile)) a

(go hired))
(t (go hired)))

(setq display fare))))

167

LIST OF REFERENCES

1. Weste, Neil H. E., and Eshraghian, Kamran., Principles of CMOS VLSI De-

sign, A Systems Perspective. Reading, MA: Addison-Wesley Publishing Co..

1985.

2. Siskind, J. M., Southard, J. R., and Crouch, K. W., Generating Custom High

Performance VLSI Designs From Succint Algorithmic Descriptions. Proceed-

ings, Conference on Advanced Research in VLSI, January 1982.

3. Carlson, D. J., Applications of a Silicon Compiler to VLSI Design of Digital

Pipelined Multipliers. M.S. Thesis, Naval Postgraduate School., Monterey, CA,

June 1984.

4. Froede, A. 0., Silicon Compiler Design of Combinational and Pipeline Adder

Integrated Circuits. M. S. Thesis, Naval Postgraduate School, Monterey, CA.

June 1985.

5. Larabee, P.. C., VLSI Design With the MacPitts Silicon Compiler. 'I. S.

Thesis, Naval Postgraduate School, Monterey, CA, September 1985.

6. Malagon-Fajar, M. A., Silicon Compilation Using a LISP-Based Layout Lan- 'S

guage. M. S., Thesis, Naval Postgraduate School, Monterey, CA, June 19S6.

7. Weist, E. L., A Flowcharting System and Compiler Interface for MacPitts.

M. S. Thesis, Naval Postgraduate School, Monterey, CA, June 1986.

8. Mullarky, A. J., CMOS cell Library for a Silicon Compiler. M. S. Thesis.

Naval Postgraduate School, Monterey, CA, March 1987.

168

-- w6!

S

9. Malagon, E. G., Techology Upgrade of a Silicon Compiler. M. S. Thesis, Naval

postgraduate School, Monterey, CA, June 1987.

10. Baumstarck, J. E., SCMOS Silicon Compiler Organelle Design and Insertion. S

M. S. Thesis, Naval Postgraduate School, Monterey, CA, December 1987.

11. Mead, C. A., and Conway, L. A., Introduction to VLSI Systems. Addison-

Wesley Publishing Co., Reading, MA, 1980.

12. Computer Science Division. EECS Department University of California at

Berkeley, 1986 VLSI Tools; Still More Works by the Original Artists. Report

No. UCB/CSD 86/272, December 1985.

13. Kelly, M. F., Comparative Router Performance. Ph. D. Thesis, University of

California, Livermore, CA, 1977.
",

14. Lee, C., An Algorithmic for Path Connections and Its Applications. IRE

Transactions on Electronic Computers (September 1961), pp. 346-365.

15. Hashimoto, A., and Stevens, J., Wire Routing by Optimizing Channel As- ',

zignment Within Large Apertures, Proceedings Design Automation Workshop

(1971), pp. 165-169.

16. Rivest, R. L., and Fiduccia. C. M., A "Greedy" Channel Router, 19th Desig-

nAutomation Conference (1982), pp. 418-424.
U

17. Deutsch, D. N., A "Dogleg" Channel Router, Proceedings 13th Design Au-

tomation Conference (1976), pp. 425- 433.

18. McGehee, R. K., A Practical Moat Router, 24th Design Automation Confer-

ence (1987), pp. 216-221.

169

iX

19. Harmon, J. E., Automated Deszgn of a Microprogrammed Controller for a

Finite State Machine. M. S. Thesis, Naval Postgraduate School, Monterey.

CA, Work in progress.

20. Wyatt, J. L. Jr., The Practical Engineer's No-nonsense Guzde to On-Chip
..

Signal Delay Calculations, VLSI Memo No. 87- 381, Massachusetts Institute

of Technology, May 1987.

ftd.

7..0

It

ft

S.y

BIBLIOGRAPHY

1. Carr6, Bernard, Graphs and Networks, Clarendon Press, Oxford, 1979.

2. Crouch, K. W., L5 User's Guide, Massachusetts Institute of Technology Lin-

coln Laboratories Project Report RVLSI-5, 7 March 1984.

3. Engineering Staff of American Micro-Systems, Inc., MOS Integrated Circuztq.

Van Nostrand Reinhold Co., 1972.

4. Joobbani, Rostam., An Artificial Intelligence Approach to VLSI Routing.

Kluwer Academic Publishers, 1986.

5. Mukherjee, Amar, nMOS & CMOS VLSI Systems Dsign, Prentice-Hall, En-

glewood Cliffs, N.J., 1986.

6. Wilensky, Robert, LISPcraft, New York, NY: W. W. Norton & Co.. 1984.

*_

.

,r

171 %

~d%.uTM ~ . (%V% N~ ~ ** *I,~~ *. *.~Y' i

INITIAL DISTRIBUTION LIST
No. Cupits ,

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Department Chairman, Code 62 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

4. Department Chairman, Code 52
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5000

5. Dr. D. E. Kirk, Code 62KI 2
Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5000

6. Dr. H. H. Loomis, Jr., Code 62LM
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

7. Dr. D. C. Yang, Code 62YA
Department of Electrical and Computer Engineering
Naval .Postgraduate School
Monterey, CA 93943-5000

8. Dr. M. Zyda, Code 52MZ
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5000

172

Nrr

I.% .%7I5
5 ~ ~ %%

No. C'opie(,
9. Mr. P. Blankenship

Massachusetts Institute of Technology
Lincoln Laboratory
P. 0. Box 73
Lexington, MA 02173-0073

10. Mr. J. O'Leary
Massachusetts Institute of Technology
Lincoln Laboratory
P. 0. Box 73
Lexington, MA 02173-0073

11. Dr. T. Bestul
Naval Research Laboratories
Code 7590
Washington, D.C. 20375

12. Mr. A. DeGroot
Lawrence Livermore National Laboratory
P.O. Box 808
Livermore, CA 94550

13. Dr. A. Ross
Naval Research Laboratory, Code 9110
4555 Overlook Ave. SW
Washington, D.C. 20375

14. CDR David Southworth

Office of Naval Technology, Code ONT227
800 N. Quincy (BT #1)
Arlington, VA 22217-5000

15. Mr. James Hall
Office of Naval Te:hnology, Code ONT20P4
800 N. Quincy (B'? #1)
Arlington, VA 22217-5000

16. LT. D. Carleton, USN
SMC #1493
Naval Postgraduat(School
Monterey, CA 93943

173

*A,

